Ball State University starts second phase of largest geothermal system in U.S

Ball State starts final phase of creating nation's largest geothermal system

In the shadow of two outdated smokestacks and four antiquated coal-fired

boilers, Ball State has started the second and final phase of converting the
university to a geothermal ground-source heat pump system - the largest
project of its kind in the United States.

The conversion, started in 2009 to replace the coal boilers, now provides
heating and cooling to nearly half the campus.

When the system is complete, the shift from fossil fuels to a renewable
energy source will reduce the university's carbon footprint by nearly half
while saving $2 million a year in operating costs.

Ball State is installing a vertical, closed-loop district system that uses
only fresh water. The system uses the Earth's ability to store heat in the
ground and water thermal masses. A geothermal heat pump uses the Earth as
either a heat source, when operating in heating mode, or a heat sink, when
operating in cooling mode.

Under the direction of Jim Lowe, director of engineering, construction and
operations, work was recently completed on Phase 1, which includes two
geothermal fields, construction of the North District Energy Station and
connecting buildlings on the northern part of campus to the new distribution
system.

Work has begun on Phase 2, which includes installation of 780 of the
remaining 1,800 boreholes in a field on the south area of campus.
Construction will continue throughout 2013-2014 and will include a new
District Energy Station South containing two 2,500-ton heat pump chillers
and a hot water loop around the south portion of campus. The system will
then connect to all buildings on campus - eventually providing heating and
cooling to 5.5 million square feet.

"When costs began to escalate for the installation of a new fossil fuel
burning boiler, the university began to evaluate other renewable energy
options," Lowe says. "This led to the decision to convert the campus to a
more efficient geothermal-based heating and cooling system."

The project has caught the attention of universities and communities across
the nation. Lowe is sharing information about the university's new operation
with others who want learn how they too can benefit from a geothermal
system.

Featured Product

Parker Wind Power Solutions - Core technologies to help you harness the wind… onshore and offshore

Parker Wind Power Solutions - Core technologies to help you harness the wind… onshore and offshore

Visit Booth #2886 at AWEA Windpower, May 22-25 in Anaheim, CA to see how Parker products, systems and services help you raise performance while reducing risk in wind energy environments. Parker has been on the forefront of windpower for over two decades, with solutions that touch virtually every critical function in the turbine. From integrated lube oil filtration systems and sealing technologies that make drive trains more reliable and bearings operate like new to compact blade pitch actuation systems that maximize rotor efficiency and minimize vibrations in the turbine. Parker has the solutions that make today's advanced and sophisticated wind power plants better and smarter. Case in point? Our high efficiency power conversion systems that deliver optimum power to the grid. While our scalable evaporative cooling system lowers overall system cost with up to 40% higher power throughput.