Semprius Demonstrates Proprietary Four-Junction, Four-Terminal Stacked Solar Cell Reaching a World-Class Efficiency Level of 43.9 Percent

Semprius' Micro Transfer Printing Process Provides Near-term Pathway to Solar Cells with 50 Percent Efficiency

DURHAM, N.C.--Semprius, Inc., an innovator in high concentration photovoltaic (HCPV) solar modules, has manufactured the first four-junction, four-terminal stacked solar cell using its proprietary micro transfer printing process. In this effort, Semprius worked in collaboration with Professor John Rogers and his team at the Frederick Seitz Materials Research Laboratory at the University of Illinois at Urbana-Champaign and researchers at Solar Junction, a leading III-V high-efficiency solar cell manufacturer and important Semprius partner. The results of this project will be published this week in the journal Nature Materials.


The new stacked solar cell is comprised of a three-junction microcell that is stacked on top of a single-junction germanium microcell using Semprius' high-speed micro transfer printing process, which enables the simultaneous formation of thousands of stacked microcells with very high yields. By using four junctions, the stacked cell is able to capture light across a broader portion of the solar spectrum and therefore achieve efficiencies much higher than conventional silicon and thin-film single-junction solar cells. Initial trials yielded solar cells with measured efficiencies up to 43.9 percent. This process is capable of achieving solar cell efficiencies greater than 50 percent in the near future.

A key achievement of this project was the development of a new interfacial material that is placed between the top and bottom cell to minimize optical losses within the stack and thereby optimize overall conversion efficiency. In addition, the new stacked cell has four terminals, rather than the standard two. This reduces the spectral dependence of the solar cell and increases the solar cell's energy yield under normal operation in the field.

Semprius is a graduate of the U.S. Department of Energy's SunShot Incubator Program. "This achievement is notable because it establishes a straight-forward path to significant future increases in conversion efficiency," said Dan Friedman, manager of the National Renewable Energy Laboratory (NREL) III-V Multijunction Photovoltaics Group. "Increasing efficiency is critical to reducing the cost of solar energy because it helps drive down not only module costs, but also many other costs, including the cost of land, labor and wiring."

Semprius has been at the forefront of high-efficiency, HCPV solar module development for the past seven years. In 2012, Semprius announced the first mass-produced photovoltaic module that exceeded 33 percent efficiency. In September 2013, Semprius increased this record to 35.5 percent, as confirmed by the Fraunhofer Institute for Solar Energy Systems ISE in Germany.

"We would like to thank our collaborators at the University of Illinois and Solar Junction for their help in this project," said Scott Burroughs, vice president of Technology at Semprius. "Because the process we used is fully compatible with our current production processes, we believe this demonstration can be easily transferred to manufacturing."

Over the past two years, Semprius has deployed systems with strategic customers in six U.S. states and eight countries around the world.

About Semprius

Semprius, Inc. manufactures the highest efficiency solar modules in the world, with production module efficiency reaching 35.5 percent. Using the world's smallest commercial solar cells and applying state-of-the-art manufacturing processes, Semprius is leading the next generation of cost-competitive, sustainable solar electricity. Semprius was named to MIT Technology Review's 2013 50 Disruptive Companies List, an annual list of the world's most innovative technology companies. Semprius' headquarters and production facilities are located in North Carolina, USA. For more information, please visit www.semprius.com.

Featured Product

HPS EnduraCoilTM Cast Resin Medium Voltage Transformer

HPS EnduraCoilTM Cast Resin Medium Voltage Transformer

HPS EnduraCoil is a high-performance cast resin transformer designed for many demanding and diverse applications while minimizing both installation and maintenance costs. Coils are formed with mineral-filled epoxy, reinforced with fiberglass and cast to provide complete void-free resin impregnation throughout the entire insulation system. HPS EnduraCoil complies with the new NRCan 2019 and DOE 2016 efficiency regulations and is approved by both UL and CSA standards. It is also seismic qualified per IBC 2012/ASCE 7-10/CBC 2013. Cast resin transformers are self-extinguishing in the unlikely event of fire, environmentally friendly and offer greater resistance to short circuits. HPS also offers wide range of accessories for transformer protection and monitoring requirements.