A battery startup flows toward launch

Will flow batteries — large tanks of liquid batteries — be a key technology to help deliver more clean power for the grid? Flow battery startup EnerVault is getting closer to commercializing that vision; it has completed the design of its prototype battery and is counting on a demonstration project next year to help the company launch its technology into the market in 2013, EnerVault CEO Craig Horne told us. The Silicon Valley startup is developing rechargeable flow batteries that, unlike a lithium-ion battery, separate the energy storage materials and electrolyte from the cells in which the electrochemical reaction occurs. The design involves two tanks, each of which contains a different mix of energy storage material and electrolyte. EnerVault's design fills one tank of electrolyte with iron (the energy storing material) and another electrolyte tank with chromium. Pumps send the solutions from the tanks into separate chambers of a cell to generate electricity. Flow batteries can be scaled up and down easily because of the use of external storage tanks. Flow batteries are also rechargeable, the electrolytes can last a really long time, and typically use abundant materials, so can be a more affordable option.

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

LG Solar Unveils NeON R with Enhanced Aesthetics and Energy Savings

LG Solar Unveils NeON R with Enhanced Aesthetics and Energy Savings

The NeON R module features "Back Contact" cell technology delivering an entirely black panel that is aesthetically pleasing and energy efficient. The cell's seamless, surface blends perfectly into nearly all rooftop designs while the module's electrodes are positioned on the rear of the cell. Using LG's N-type cell structure, the panels produce 365W of energy, up to 7.3kWp, compared to 5.8kWp of the p-type cell. The module's new design minimizes LID, thereby delivering a longer lifespan and increased energy output.