Solar cell breakthrough could hit 40 percent efficiency

Researchers using novel materials to build photovoltaic cells say their efforts could nearly double the efficiency of silicon-based solar cells. The cells being developed by teams from the University of Arkansas and Arkansas State University have the potential to achieve a light-to-energy conversion rate, or solar efficiency, of 40 percent or better, according to the researchers. The photovoltaic cells are intended for use in satellites and space instruments. Currently, the silicon-based solar cells that NASA uses in its satellites and instruments have efficiencies of only up to 23 percent, according to NASA statistics. And today it was announced that the research teams are getting more money--a total of $1 million in new funding--to further their work. Of that, about $735,000 will come from NASA, $237,000 from the University of Arkansas, and $86,000 from Arkansas State. Omar Manasreh, professor of electrical engineering at the Optoelectronics Research Lab at the University of Arkansas, has been developing the technology so far with a $1.3 million grant from the U.S. Air Force Office of Scientific Research. He leads the research team along with Liangmin Zhang, assistant professor at Arkansas State.

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

SolarEdge Technologies - Solar Inverters, Power Optimizers and PV Monitoring

SolarEdge Technologies - Solar Inverters, Power Optimizers and PV Monitoring

The SolarEdge PV inverter combines sophisticated digital control technology with efficient power conversion architecture to achieve superior solar power harvesting and best-in-class reliability. The fixed-voltage technology ensures the solar inverter is always working at its optimal input voltage over a wider range of string lengths and regardless of environmental conditions. A proprietary data monitoring receiver has been integrated into the inverter and aggregates the power optimizer performance data from each PV module. This data can be transmitted to the web and accessed via the SolarEdge Monitoring Portal for performance analysis, fault detection and troubleshooting of PV systems.