All-carbon solar cell harnesses infrared light

New type of photovoltaic device harnesses heat radiation that most solar cells ignore.

About 40 percent of the solar energy reaching Earth’s surface lies in the near-infrared region of the spectrum — energy that conventional silicon-based solar cells are unable to harness. But a new kind of all-carbon solar cell developed by MIT researchers could tap into that unused energy, opening up the possibility of combination solar cells — incorporating both traditional silicon-based cells and the new all-carbon cells — that could make use of almost the entire range of sunlight’s energy.

The new cell is made of two exotic forms of carbon: carbon nanotubes and C60, otherwise known as buckyballs. “This is the first all-carbon photovoltaic cell,” Strano says — a feat made possible by new developments in the large-scale production of purified carbon nanotubes. “It has only been within the last few years or so that it has been possible to hand someone a vial of just one type of carbon nanotube,” he says. In order for the new solar cells to work, the nanotubes have to be very pure, and of a uniform type: single-walled, and all of just one of nanotubes’ two possible symmetrical configurations.

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

Darfon G320 Microinverter

Darfon G320 Microinverter

The Darfon G320 is the microinverter solution for today's high-power solar modules. The G320 handles 60- and 72-cell modules up to 350W DC and outputs up to 300W AC. The G320's 3-phase configuration accommodates the electrical distribution systems of most commercial buildings and to reduce, if not eliminate, the need for expensive transformers. The G320 comes in four voltage/phase configurations, so it can be installed in residential, commercial or utility applications.