Stanford's solar cell turbocharger could boost solar power output by 50%

Scientists at Stanford University have improved the efficiency of a revolutionary solar cell by around 100 times. Unlike standard photovoltaic cells, which only capture light energy, Stanford’s new device captures both light and heat, potentially boosting solar cell efficiency towards 60% — way beyond the 30-40% limit of traditional silicon photovoltaic solar cells.

This new device uses a process called photon-enhanced thermionic emission (PETE). In photovoltaic cells, photons strike a semiconductor (usually silicon), creating electricity by knocking electrons loose from their parent atoms. The PETE process is similar, but also very different and altogether rather complex. In essence, think of it as the photovoltaic equivalent of a turbocharger.  Full Article.

Comments (1)

Perhaps (certainly) a rhetorical question, but why must we, for commercialization purposes, exploit interim solutions with all of their negative environmental and social impacts, before going directly to the obvious and best answer? Certainly cost is a factor, but continuing to do so is just morally and ethically wrong.

Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

Kipp & Zonen - DustIQ the novel soiling monitoring solution for solar panels

Kipp & Zonen - DustIQ the novel soiling monitoring solution for solar panels

Soiling of the panel glass is one of the major problems in the rapidly expanding solar energy market, with the attendant loss of efficiency and reduction in performance ratios. Now, there's a new, simple and very cost-effective alternative. Based on Kipp & Zonen's unique Optical Soiling Measurement (OSM) technology, DustIQ can be easily added to new or existing solar arrays and integrated into plant management systems. The unit is mounted to the frame of a PV panel and does not need sunlight to operate. It continuously measures the transmission loss through glass caused by soiling, so that the reduction in light reaching the solar cells can be calculated.