GE Introduces Smart, Powerful 2.75-120 Wind Turbine

At the European Wind Energy Association's annual conference, GE) announced its 2.75-120 wind turbine, a smarter, more powerful turbine. Part of GE's brilliant wind platform, the 2.75-120 provides 5 percent more annual energy production than GE's 2.5-120 model and is available with various tower technologies, ranging between 85-139 meters, and optional energy storage.

"As we accelerate our platform's growth in Europe, we will continue to invest in technology such as the 2.75-120's flexible tower and other energy storage options, making GE's wind turbines more customizable for developers and operators," said Cliff Harris, general manager of GE's renewable energy business in Europe.

The 2.75-120 is available on a steel, hybrid or space frame tower, helping to tailor the turbine for unique site conditions and bring wind power to new places across the continent. The range of tower height spans 85-139 meters tall.

Short-term or long-term energy storage is available with the 2.75-120, making wind power more predictable, flexible and fast responding through battery software applications. Short-term storage is integrated at the turbine level and long-term storage is centralized for the wind farm. These options further customize GE's offering based on-site or operator needs.

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

LG Solar Unveils NeON R with Enhanced Aesthetics and Energy Savings

LG Solar Unveils NeON R with Enhanced Aesthetics and Energy Savings

The NeON R module features "Back Contact" cell technology delivering an entirely black panel that is aesthetically pleasing and energy efficient. The cell's seamless, surface blends perfectly into nearly all rooftop designs while the module's electrodes are positioned on the rear of the cell. Using LG's N-type cell structure, the panels produce 365W of energy, up to 7.3kWp, compared to 5.8kWp of the p-type cell. The module's new design minimizes LID, thereby delivering a longer lifespan and increased energy output.