New spongelike structure converts solar energy into steam

A new material structure developed at MIT generates steam by soaking up the sun.

The structure — a layer of graphite flakes and an underlying carbon foam — is a porous, insulating material structure that floats on water. When sunlight hits the structure’s surface, it creates a hotspot in the graphite, drawing water up through the material’s pores, where it evaporates as steam. The brighter the light, the more steam is generated.

The new material is able to convert 85 percent of incoming solar energy into steam — a significant improvement over recent approaches to solar-powered steam generation. What’s more, the setup loses very little heat in the process, and can produce steam at relatively low solar intensity. This would mean that, if scaled up, the setup would likely not require complex, costly systems to highly concentrate sunlight.

Hadi Ghasemi, a postdoc in MIT’s Department of Mechanical Engineering, says the spongelike structure can be made from relatively inexpensive materials — a particular advantage for a variety of compact, steam-powered applications.

“Steam is important for desalination, hygiene systems, and sterilization,” says Ghasemi, who led the development of the structure. “Especially in remote areas where the sun is the only source of energy, if you can generate steam with solar energy, it would be very useful.”

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

Joyce Dayton Corp - Solar Tracking Drive Solutions

Joyce Dayton Corp - Solar Tracking Drive Solutions

Joyce Solar Actuators are designed to precisely position smaller solar tracking equipment. Their robust and efficient DC motor (24V or 36V) keeps power consumption to a minimum. Travel speeds remain nearly constant regardless of the load. Ideal for rugged environments common to the solar industry, these cost-effective SA actuators have an IP65 protection rating. Self-locking features in the mechanism ensure that the solar actuator will hold position throughout the daily tracking cycle. Specifications: • Double clevis mounting for easy installation • Clutch for overload protection • Adjustable limit switches for flexible travel settings • Reed sensor digital feedback for accurate positioning • Duty cycle is 25% (4 min. running, 12 min. rest) • Lubricated for life