NASA Seeks Proposals for Extreme Environment Solar Arrays

NASA's space technology program is seeking proposals to develop solar array systems for space power in high radiation and low solar energy environments. 

In the near future, NASA will need solar cells and arrays for multiple applications in robotic and human space exploration missions. Because these systems were traditionally developed for operation near Earth, there is a need to develop new solar array concepts as NASA considers missions that require exposure to more intense radiation environments and travel ever farther from the sun. 

NASA hopes to solicit proposals for the development of promising technologies to increase solar cells that will work under low intensity, low temperature and high radiation environments.

Proposals will be accepted from U.S. organizations, including NASA centers and other government agencies, federally funded research and development centers, educational institutions, industry and nonprofit organizations.

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

WS510 Secondary Standard

WS510 Secondary Standard

In the monitoring of large photovoltaic (Utility Scale), in assessing potential sites (Solar-assessment), or in up and coming electricity cost saving initiatives projects (Commercial & Industrial), the WS510 now provides the market a secondary standard pyranometer, ultrasonic wind speed, ultrasonic wind direction, temperature, pressure and humidity all in a single unit.. This sensor meets the high demands of the world meteorological organization (WMO) through the active valving at air temperature measurement and the inertia- and maintenance-free measurement of wind speed and wind direction on the ultrasonic principle. Equipped with a Kipp & Zonen pyranometer of the secondary standards, the WS510-UMB Compact weather sensor from Lufft unites the precision of a variety of meteorological individual sensors in a single all-in-one device, for the first time.