Research Report - Better Biofuels Ahead - The Road to Low-Carbon Fuels

By Emily Cassidy, Research Analyst for EWG.org:  Biofuels produced from switchgrass and post-harvest corn waste could significantly reduce the emissions that contribute to climate change, according to an analysis by EWG and University of California biofuels experts.

EWG’s analysis found that the life cycle carbon intensity of cellulosic ethanol from switchgrass was 47 percent lower than that of gasoline. Ethanol made from corn stover – the leaves and stalks that remain in the field after the grain is harvested – has a life-cycle carbon intensity 96 percent lower than gasoline’s.[1]

By contrast, studies have found that the life cycle carbon intensity of corn ethanol is greater than that of gasoline (Mullins et al. 2010, EPA, 2010a). Yet current federal policies strongly favor the production of conventional biofuels such as corn ethanol at the expense of lower-carbon alternatives.   View full article...

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

SolarEdge Technologies - Solar Inverters, Power Optimizers and PV Monitoring

SolarEdge Technologies - Solar Inverters, Power Optimizers and PV Monitoring

The SolarEdge PV inverter combines sophisticated digital control technology with efficient power conversion architecture to achieve superior solar power harvesting and best-in-class reliability. The fixed-voltage technology ensures the solar inverter is always working at its optimal input voltage over a wider range of string lengths and regardless of environmental conditions. A proprietary data monitoring receiver has been integrated into the inverter and aggregates the power optimizer performance data from each PV module. This data can be transmitted to the web and accessed via the SolarEdge Monitoring Portal for performance analysis, fault detection and troubleshooting of PV systems.