Low-cost 'solar absorber' promising for future power plants

Emil Venere for Phys.org:  Researchers have shown how to modify commercially available silicon wafers into a structure that efficiently absorbs solar energy and withstands the high temperatures needed for "concentrated solar power" plants that might run up to 24 hours a day.

The research advances global efforts to design hybrid systems that combine solar photovoltaic cells, which convert visible and ultraviolet light into electricity, thermoelectric devices that convert heat into electricity, and steam turbines to generate electricity. The thermoelectric devices and steam turbines would be driven by heat collected and stored using mirrors to focus sunlight onto a "selective solar absorber and reflector."

To efficiently collect heat from the sun, specially designed surfaces based on low-cost materials are needed to selectively absorb only photons from a certain range of the light spectrum while reflecting others.  Full Article:

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

Parker - End to End Solutions for PV/CSP Solar, Grid-Tie and Energy Storage

Parker - End to End Solutions for PV/CSP Solar, Grid-Tie and Energy Storage

Please join Parker's Energy Platform Solutions team at the upcoming Solar Power International show, September 10-13 at Mandalay Bay Convention Center in Las Vegas, NV. Our offering features a compact outdoor Power Conversion/Energy Storage System, complemented by an outdoor central solar inverter, both employing two-phase evaporative liquid cooling technology and modular compact designs. We will also feature axis tracker solutions with our hybrid actuator system that uses an intelligent position feedback sensor, as well as our independent wireless condition monitoring sensors for hydraulic pressure. To learn more about what we will display and launch at SPI, please click on the product sections below.