The Future of Bio-Inspired Batteries

A major advantage that bio-inspired batteries have as compared to other batteries is their ability to allow an instant recharge.

Batteries Get a Boost From California Utilities

If we stop and take a critical look at the fragility of our energy supply system, we see that it could be strengthened by distributing energy generation and storage. This means it's not just the utility company's job to store energy… it's everyone's job.

Silicon Valley and New York State bet on non-flammable electric vehicle battery company

"NanoLyte™ Electrolyte contains ionic liquids, which are non-flammable. By engineering the molecular structure, we can create electrolytes that are abuse tolerant without sacrificing the power or battery life," says Dr. Surya Moganty, CTO at NOHMs and inventor of the technology.

Could A Lithium Shortage De-Rail The Electric Car Boom?

Lithium has the purest of fundamentals of any 'commodity' out there, and the next oil barons look set to actually be lithium barons.

'Ideal' energy storage material for electric vehicles developed

Walt Mills for  The energy-storage goal of a polymer dielectric material with high energy density, high power density and excellent charge-discharge efficiency for electric and hybrid vehicle use has been achieved by a team of Penn State materials scientists. The key is a unique three-dimensional sandwich-like structure that protects the dense electric field in the polymer/ceramic composite from dielectric breakdown. Their results are published today (Aug. 22) in the Proceedings of the National Academy of Sciences (PNAS). "Polymers are ideal for energy storage for transportation due to their light weight, scalability and high dielectric strength," says Qing Wang, professor of materials science and engineering and the team leader. "However, the existing commercial polymer used in hybrid and electric vehicles, called BOPP, cannot stand up to the high operating temperatures without considerable additional cooling equipment. This adds to the weight and expense of the vehicles."   Cont'd...

US Energy Dept says "holy grail" of clean energy storage is imminent

  Cat Distasio for inhabitat:  Many countries are on the brink of becoming self-sufficient in their clean energy production, thanks to advances in battery technology that allow electricity from renewable sources to be stored and used on demand. Over the years, as renewable energy generation methods have charged forward, utility companies have struggled with how to integrate that clean energy in usable ways. Now, scientists at Harvard, MIT, Stanford, the Lawrence Livermore and Oak Ridge labs, and other agencies are working on energy storage projects funded by the U.S. Department of Energy, with their sights set on what the department calls the ‘holy grail’ of energy policy. The department says the industry could be transformed in as little as five to ten years. Earlier this year, Advanced Research Projects-Energy (ARPA-E), the division of the U.S. Department of Energy founded in 2009 to oversee these projects, claimed to have achieved that goal. Without pointing to a specific invention or discovery, ARPA-E insists that the solution lies amid the 75 projects the agency is funding. The breakthrough technology—the next generation of renewable energystorage—is expected to be developed for large-scale usage in as little as five to ten years.   Cont'd...

Using Silicon in Lithium Ion Batteries to Increase Capacity

A key attribute of silicon in lithium ion batteries (LIB) is the higher capacity that Si can offer which leads to greater electric vehicle driving range or longer operating consumer electronics.

Super Battery Technology

Laboratory testing of the company's novel prototype cathode material have yielded a set of critical data that translates into significant lithium-ion battery performance projections for BioSolar to target.

Very Large Lithium-ion Batteries

In the case of the relatively new market for very large, ground-based lithium-ion battery packs for such things as grid peak shaving, weight is not a primary issues, volume can matter somewhat but life, cost over life, performance and reliability matter greatly.

Is Tesla Entering a New Frontier?

Efficient low-cost batteries are the new frontier and the new frontier is here now from all-electric vehicles to home energy systems.

Energy Storage - Lithium Iron vs Lithium Ion Battery Applications

There are several key differences between the Iron Edison Lithium Iron battery and the Tesla Powerwall. First, an Iron Edison Lithium Iron battery is available in traditional nominal voltages of 12V, 24V and 48V, making it fully compatible with common battery-based inverters and charge controllers from major manufacturers like Outback, Schneider Electric, Magnum, MidNite Solar and SMA.

Tesla And Other Tech Giants Scramble For Lithium As Prices Double

And while lithium has traditionally been controlled by a handful of major global suppliers, spiking demand is changing this landscape drastically.

sonnen announces the world's cheapest electric vehicle

sonnen's Philipp Schroeder: "We are headed for a revolution that has the potential to completely abolish pedestrians and give congested inner cities new freedom!"

Lithium-Ion Energy Storage for PV System in Puerto Rico

Li-ion solutions are both scalable and flexible in their power-to-energy ratio. The flexibility enables MTR-type solutions for high-power smoothing, medium-power options for shaping renewable output to meet a forecast, and high-energy systems for shifting of renewable energy to periods of peak load.

Lead Recycling Threatened By Lithium-ion

The U.S. Society of Automotive Engineers (SAE) and the International Electrotechnical Committee (IEC) are proposing to develop standardized labels that are color-coded to allow for better identification between lead-acid and lithium-ion batteries.

Records 16 to 30 of 72

First | Previous | Next | Last

Featured Product

Darfon G320 Microinverter

Darfon G320 Microinverter

The Darfon G320 is the microinverter solution for today's high-power solar modules. The G320 handles 60- and 72-cell modules up to 350W DC and outputs up to 300W AC. The G320's 3-phase configuration accommodates the electrical distribution systems of most commercial buildings and to reduce, if not eliminate, the need for expensive transformers. The G320 comes in four voltage/phase configurations, so it can be installed in residential, commercial or utility applications.