Record-Breaking Demand For Global Solar PV Industry in Q1 2014, According to NPD Solarbuzz

New solar photovoltaic (PV) demand added during the first quarter of 2014 exceeded 9 gigawatts (GW), which was 35 percent more than the previous first-quarter record, set last year. In fact, every quarter in 2014 is forecast to reach new highs, with trailing 12-month demand at the end of Q1 2015 forecast to exceed 50 GW for the first time, according to findings in the latest NPD Solarbuzz Quarterly report.  The record level of demand achieved in the first quarter was driven by strong growth in Japan and the United Kingdom. These two countries combined accounted for more than one-third of global solar PV demand in Q1 2014 and set new quarterly records for PV deployed. 

How They Clean Those Gigantic Solar Energy Plants Clean?

The world's largest solar plants sure look amazing, but for those with inquisitive minds they raise one big question: how the hell do they keep all those panels clean? Nowadays, using robots like this!   This video shows the newly installed robotic cleaning system at Ketura Sun Solar Park. Until now, the panels covering the 20-acre site were only cleaned about nine times a year—a laborious task, performed infrequently due to expense—which in turn led to sub-optimal plant efficiency.   Now, though, a robotic army—designed and made by Israel-based Ecoppia—swarm over the panels to keep them clean. The 100 centrally controlled automatons set to work at nighttime, using microfiber pads and controlled air flows to push dirt from the surface of the solar panels. The robots move up and down their own aluminum frames to avoid loading the panels, and during the day they sit at the bottom and charge using electricity generated by the plant. So, now you know. 

One-Third of Texas Was Running on Wind Power This Week

On Wednesday, March 27th, the largest state in the contiguous United States got almost one-third of its electricity by harnessing the wind. According to the Electric Reliability Council of Texas, which manages the bulk of the Lone Star State's power grid, a record-breaking 10,296 MW of electricity was whipped up by wind turbines. That's enough to provide 29 percent of the state's power, and to keep the lights on in over 5 million homes.   ERCOT notes in a statement issued today that "The new record beats the previous record set earlier this month by more than 600 MW, and the American Wind Energy Association reports it was a record for any US power system."

Clean Edge Finds Global Solar Deployment Exceeds Wind for First Time

The global clean-energy picture for 2013 was a classic good news-bad news story, according to the Clean Energy Trends 2014 report issued today by clean-tech research and advisory firm Clean Edge, Inc. The industry saw dazzling growth, success, and rising stock prices in some sectors – most notably solar photovoltaic (PV) deployment – but downward trends and policy and finance hurdles in others.  Last year also marked a significant transition in the history of clean energy: for the first time since Clean Edge began tracking global markets in 2000, the world installed more new solar PV generating capacity, 36.5 gigawatts, than wind power (35.5 GW). Record levels of new solar deployment in China, Japan, and the U.S. combined with a down year in the wind industry to create this unprecedented crossover.  The global solar market's continued double-digit growth of 15 percent, plus a modest uptick in biofuels' market size, was not enough to overcome the wind industry's lackluster performance. As a result, combined global revenue for solar PV, wind power, and biofuels held nearly steady at $247.6 billion, down just slightly from $248.7 billion in 2012.  The full Clean Energy Trends 2014 report can be downloaded for free at www.cleanedge.com.

Much Energy Above the Treetops

Inland sites can offer sufficient wind yield for wind-farm operation. Initial results obtained from a TÜV SÜD test wind mast show that wind yield depends on the specific location.

Sustainability for the PV Industry: Field Service

By examining the differences in cost of service and downtime between three types of PV systems, we have demonstrated that the lowest TCO, and thus lowest LCOE, can be achieved by utilizing a field-serviceable string inverter.

Solar Power and the Future Energy Mix

In the near future, as solar becomes even more efficient and cost effective, it will play a larger role in industry and energy production. Plants that primarily burn natural gas for fuel, for example, will increasingly use solar to supplement the process to increase the efficiency of power generation.

The Key To Residential Solar Power Is Now Marketing

The potential for solar power is now enormous. The economics are attractive; the appeal is proven; the code has been cracked. With proper marketing, the future of solar power is very bright indeed.

From Selenium to Silicon and Beyond

The 60th Anniversary of the First Practical Solar Cell

Technology Increasing Wind Industry Competitiveness

The benefits of a centralized database and platform for managing data extend beyond the scope of one software product.

Unbiased, Comprehensive Solar Module Rating System

Although we have over 12, 000 PV modules in the database today, we are always searching for new modules. Manufacturers and consumers can contact us if they have modules that are not listed.

Solar Power is Growing at a Rate Faster than Silicon Valley

Already in the lead as the fastest-growing clean and renewable energy source in America, solar power is growing to account for 29% of new American electricity, trailing just behind natural gas at 46%.

PURE Energies Infographic Highlights Water Usage by Power Plants

The PURE Energies #WorldWaterDay infographic compares different energy generation methods and how much water each of them consumes.

Siemens to construct factory for offshore wind power in Great Britain

Siemens is investing more than EUR190 million (GBP160 million) in new offshore production facilities in Great Britain. Production of rotor blades for offshore wind turbines of the 6-megawatt class is planned, with a new logistics- and service centre slated for Hull. The British Prime Minister David Cameron and Michael Suess, member of the managing board of Siemens AG and CEO of the Energy Sector will reaffirm their common dedication to these projects this afternoon in Hull.  "Our decision to construct a production facility for offshore wind turbines in England is part of our global strategy: we invest in markets with reliable conditions that can ensure that factories can work to capacity. The British energy policy creates a favourable framework for the expansion of offshore wind energy. In particular, it recognizes the potential of offshore wind energy within the overall portfolio of energy production", stated Michael Suess, member of the managing board of Siemens AG and CEO of the Energy Sector.  The offshore wind market in Great Britain has high growth rates, with an even greater potential for the future. Wind power capacity has doubled here within two years, to roughly 10 gigawatts. By 2020, a capacity of 14 gigawatts is to be installed at sea alone to combine the country's environmental objectives with secure power supply. Projects for just over 40 gigawatts are currently in the long-term planning. 

GE Taps Into The Coolest Energy Storage Technology Around

Batteries are far from being the only new energy storage technology out there and one of the more obscure and unlikely initiatives has just received a massive vote of confidence from GE.   A tiny UK company called Highview Power stores energy by using cheap, off-peak energy to cool air to -196°C using a conventional industrial refrigeration plant, turning 700 litres of ambient air into a litre of “liquid air” that can be stored in a simple insulated tank. When you need the energy, you simply open the tap, the liquid air turns back into a gas, expands in volume, drives a turbine and creates electricity. If you add heat when you release the gas, you make the process more efficient.   Highview says liquid air energy storage (LAES) has advantages over other emerging storage technologies in that it uses well-established technologies and doesn’t require any inputs such as the lithium that batteries need – the most exotic material involved in the process is stainless steel, the company says, while the extra heat can come from the process of cooling the air or from the waste heat of other industrial processes, including power stations. It is not geographically constrained like pumped hydro, it is long-lasting unlike many battery technologies and there is an existing global industrial gases infrastructure it can tap into. And unlike for a gas such as hydrogen, the storage tanks do not have to be specially reinforced or highly pressurised.

Records 1831 to 1845 of 3866

First | Previous | Next | Last

Solar Power - Featured Product

Early Fire Detection System for Battery Storage & Charging

Early Fire Detection System for Battery Storage & Charging

Revolutionizing safety in battery reliant industries, our early fire detection system uses thermal cameras to spot early signs of battery thermal runaway. It triggers alarms and notifies users via text, voice, or email, ensuring rapid response to potential hazards. Proactive and reliable, our system sets a new standard in fire prevention for enhanced peace of mind in battery storage and charging environments.