Trina Solar to Invest $500 Million in India-Based Solar Plant

Per a media report, Trina Solar Limited is going to invest $500 million for building a 2-gigawatt solar module plant in India in partnership with Welspun Energy Ltd. The plant's output will be exported to the U.S. and European markets, which have imposed punitive trade duties on solar shipments from China. 
The facility will be built in either Gujarat or Andhra Pradesh. Construction of the plant will be completed in two phases over a period of about 18 months. 

Nissan to incorporate used Leaf batteries in home energy storage system

Following in the footsteps of Tesla and Mercedes-Benz, Nissan is now set to become the latest automaker to offer battery packs for stationary energy storage. Although pricing information has yet to be provided, the Nissan product should be relatively affordable, as it will incorporate used batteries from Nissan Leaf electric cars.

Nissan designed the battery packs as part of the 4R Energy joint venture with Sumitomo Corp., and has partnered with commercial energy storage company Green Charge Networks to manufacture them. While Nissan is the source of the actual "second life" lithium-ion batteries that no longer meet the demands of automotive use, Green Charge is providing the power management software.

According to Nissan, this is the first time that used EV batteries have been commercially utilized for such an application. "A lithium-ion battery from a Nissan Leaf still holds a great deal of value as energy storage, even after it is removed from the vehicle, so Nissan expects to be able to reuse a majority of Leaf battery packs in non-automotive applications," says Brad Smith, director of Nissan's 4R Energy business in the US.  Cont'd..

Designer Carbons Are Getting a Boost from Nanotechnology

By Richard Martin for The MIT Technology Review:  A group of Stanford researchers have come up with a nanoscale “designer carbon” material that can be adjusted to make energy storage devices, solar panels, and potentially carbon capture systems more powerful and efficient.
The designer carbon that has reached the market in recent years shares the Swiss-cheese-like structure of activated carbon, enhancing its ability to catalyze certain chemical reactions and store electrical charges; but it’s “designed” in the sense that the chemical composition of the material, and the size of the pores, can be manipulated to fit specific uses.
The designer carbon tested at Stanford is “both versatile and controllable,” according to Zhenan Bao, a professor of chemical engineering and the senior author of the study, which appeared in the latest issue of the journal ACS Central Science.
“Producing high-surface-area carbons with controlled chemical composition and morphology is really challenging,” says Bao. Other methods currently available, she says, “are either quite expensive or they don’t offer control over the chemical structure and morphology.”  Cont'd...

Why You Should Be Paying Attention To The 'Other' Form Of Solar Power

Joe Romm for ThinkProgress:  Solar photovoltaic (PV) systems have seen explosive growth because of their stunning 99 percent price drop in the past quarter century. As a result, the other form of solar power — concentrating solar thermal power (CSP) — is a small fraction of the solar market.
But the International Energy Agency (IEA) says CSP has a very bright future too because it enables cheap, efficient storage, which allows CSP plants to provide electricity long after the sun has set. According to the IEA’s 2014 CSP Technology Roadmap, 11 percent of global electricity will be generated by concentrating solar thermal power in 2050.  Cont'd...

Study: U.S. could run entirely on renewable energy by 2050

A new study has mapped out a potential plan for the United States to completely transition to clean, renewable energy by 2050.
According to the research study leader Mark Z. Jacobson, a professor of civil and environmental engineering at Stanford, the process would demand significant upfront costs, but over time would be roughly equal to the costs of maintaining the fossil fuel infrastructure currently in place.
“When you account for the health and climate costs – as well as the rising price of fossil fuels – wind, water and solar are half the cost of conventional systems,” Jacobson said. “A conversion of this scale would also create jobs, stabilize fuel prices, reduce pollution-related health problems and eliminate emissions from the United States. There is very little downside to a conversion, at least based on this science.”
Among the positives of switching to clean energy: reducing air pollution in the U.S. that is responsible for approximately 63,000 Americans each year, and eliminating greenhouse gases produced by fossil fuel that would cost the world approximately $3.3 trillion per year by 2050, per a report.

Mercedes-Benz To Follow Tesla With Its Own Home Batteries

Stephen Edelstein for Motor Authority:  Tesla Motors may be the first automaker to try selling standalone battery packs for powering homes and businesses, but it may not be the only one for long. Mercedes-Benz could soon enter the energy storage business as well. A division of parent company Daimler has been testing battery packs that can power houses or store excess electricity from the grid, and plans to launch commercially in September, according to Australia's Motoring.
Called ACCUmotive, this division was created in 2009 to develop lithium-ion batteries. Like Tesla before its recent announcement, the Daimler arm has been testing energy storage systems under the radar for some time. It recently built an energy storage array operated by German electricity joint venture Coulomb. The array consists of 96 lithium-ion modules that together boast a combined 500 kilowatt hours of storage capacity, which is used to stabilize the Saxony Kamenz power grid. There are plans to expand it to 3,000 kWh of capacity.
ACCUmotive has reportedly delivered more than 60,000 lithium-ion cells to customers—which may include Mercedes itself—and employs more than 250 people. 

Five lessons on how to sell home energy storage

TRISTAN EDIS writes:  Reposit Power are one of the first companies in Australia that have teamed up with Tesla in the roll-out of their Powerwall home energy storage system. The interesting thing about Reposit is that its primary businesses isn’t selling energy hardware but, rather, using software to aggregate and trade lots of little sources of power generation into the electricity market. Most battery retailers and installers in Australia have their roots in the off-grid market – they have sold batteries to customers because their only other option was expensive, maintenance-intensive diesel generators. But Reposit is inherently bound to the grid where there are lots of generators connected which they trade against.
It means Reposit, in trying to get batteries rolled out (which they can then use to trade into the power market), face a far more challenging sales proposition. Grid-connected customers don’t really need the battery system – it’s an optional extra because the grid works extremely well in providing reliable and affordable power. Yet participants in the solar PV market know there is some considerable latent demand for batteries among householders – particularly those with solar systems – provided the offering is right. The challenge is working out what the successful marketing formula needs to be to tap this latent demand.
Dean Spaccavento, chief product officer with Reposit, explained what they’ve found out so far, outlining 10 lessons of which I’ve plucked out five. The overall message is it is extremely hard to sell a grid-connected household an energy storage system. And Reposit had the benefit of an ARENA grant which allowed them to discount the price of their $25,000, 14kWh battery system by a very hefty $10,000. This was a one-off, small volume offer. To sell battery systems in Australia it will need to happen without the benefit of such a big rebate.
The five lessons below provide one overarching lesson – batteries won’t be sold on some kind of pure sophisticated financial calculus of rate of return or NPV. Instead, it will be a mixture of rule-of-thumb financial hurdles and a strong dose of emotion.  Cont'd....

Can bladeless wind turbines mute opposition?

Dominic Bates for The Guardian:  A new bladeless wind turbine that promises to be more efficient, less visually intrusive, and safer for birdlife than conventional turbines has been welcomed by two of the UK wind energy industry’s most vocal critics.
The RSPB and the Campaign to Protect Rural England (CPRE), which have both expressed concerns over the impacts of industrial-scale windfarms on the landscape and wildlife, said the new turbine was encouraging news for birds and had the potential to open up more urban environments to the sector.
The streamlined design contains no contacting moving parts, making it virtually noiseless and less prone to vibration. Vortex Bladeless, the turbine’s Spanish developers, hopes these advantages could finally help usher in a viable consumer wind power market.
“Wind turbines now are too noisy for people’s backyard,” says David Suriol, who co-founded the company with Raul Martin and the turbine’s inventor, David Yáñez. “We want to bring wind power generation to people’s houses like solar power.”

"Designer carbon" boosts battery performance

Mark Shwartz, Stanford Univ.:  Stanford Univ. scientists have created a new carbon material that significantly boosts the performance of energy-storage technologies. Their results are featured in ACS Central Science.
"We have developed a 'designer carbon' that is both versatile and controllable," said Zhenan Bao, the senior author of the study and a professor of chemical engineering at Stanford. "Our study shows that this material has exceptional energy-storage capacity, enabling unprecedented performance in lithium-sulfur batteries and supercapacitors."
According to Bao, the new designer carbon represents a dramatic improvement over conventional activated carbon, an inexpensive material widely used in products ranging from water filters and air deodorizers to energy-storage devices.
"A lot of cheap activated carbon is made from coconut shells," Bao said. "To activate the carbon, manufacturers burn the coconut at high temperatures and then chemically treat it."
The activation process creates nanosized holes, or pores, that increase the surface area of the carbon, allowing it to catalyze more chemical reactions and store more electrical charges.

Berkeley lab unveils new solar energy center aimed at producing fuel from sunlight

Jeremy Thomas for Inside Bay Area News:  In a christening hailed as a key moment in the effort to harness the sun's energy to create fuel, Lawrence Berkeley Lab officials on Tuesday unveiled a $59 million Solar Energy Research Center.
Named after former Energy Department Secretary and Lab Director Steven Chu, the 40,000-square-foot Chu Hall will be a place of world-changing research in producing cheaper, more efficient renewable energy to replace fossil fuels, said Chu, who was honored for inspiring the mission.
"This is one of the most important problems that science, technology and innovation really need to solve," Chu said. "It's a very big deal. ... We simply need to save the world, and it's going to be science that's going to be at the heart of that solution."
The facility will be home to the Berkeley hub of the Joint Center for Artificial Photosynthesis, a Department of Energy-funded collaboration led by the California Institute of Technology that is attempting to create solar fuel as plants do by using sunlight and other catalysts to split water into hydrogen and oxygen gas and convert carbon dioxide into liquid fuels such as methanol and ethanol. The byproduct of producing such a fuel would be oxygen.

Why one company sees great potential in the U.S. offshore wind market

By Jaclyn Brandt for FierceEnergy:  In April, DONG Energy signed an agreement to take over RES Americas Developments Inc.'s (RES) more than 1,000-megawatt (MW) development project rights off the coast of Massachusetts. RES had secured the rights to two leases from the U.S. Bureau of Ocean Energy Management (BOEM) in January.

"The U.S. is an interesting market for offshore wind with the potential to become a significant area for future development," said Samuel Leupold, executive vice president of Wind Power with DONG Energy, said at the announcement in April. "We already have a number of post-2020 projects in our pipeline in North-Western Europe that we will continue to develop. With the takeover of the offshore wind development project in the US, we will broaden our geographical scope and follow the market potential outside of our current footprint."
Leupold continued, "The site conditions are quite similar to those we currently work with in North-Western Europe which means that the project could be developed using well-known technology and logistics."
Although the offshore wind market in the United States has many regulatory obstacles, Brostrøm said that there is also a lot of potential off the East Coast -- including good wind speeds and water depths. He also cited the efforts by BOEM to encourage wind development.

This cloudy-day black silicon solar cell can hit a record 22.1% efficiency

Researchers at Finland’s Aalto University have achieved a record-breaking 22.1% efficiency for a nanostructured silicon, or black, solar cell. They accomplished this by overlaying a thin, passivating film on the nanostructures by a process known as atomic layer deposition, and by integrating all of the metal contacts on the cell’s back side.
Perhaps the best part: Black solar cells work really well on cloudy days. “This is an advantage particularly in the north, where the sun shines from a low angle for a large part of the year,” said professor Hele Savin from Aalto University, who coordinated the study, in a statement. “We have demonstrated that in winter Helsinki, black cells generate considerably more electricity than traditional cells, even though both cells have identical efficiency values.”
Using the aforementioned process, the team managed to beat their previous record by almost 4%, which is a stunning achievement. The new cells have a certified external quantum efficiency of 96% at 300nm wavelengths, which the team said shows that charged carrier surface recombination is no longer a problem — and that for the first time, the black silicon isn’t limiting energy conversion efficiency. And thanks to the inherent properties of black solar cells, they can capture solar radiation at low angles, generating more electricity over the full duration of a day as compared with traditional cells.

A highlight of WINDPOWER 2015

U.S. energy secretary, Dr Ernest Moniz, spoke at the Opening General Session at AWEA’s WINDPOWER 2015 event today in Orlando, Florida. Moniz stressed that wind power is an important and necessary part of the solution to climate change. Wind could provide five times what it provides today, he said, with a goal of one trillion kilowatt-hours per year in America.

To get there, new technologies are needed to boost the industry is areas where it is not yet cost-effective or as profitable as other energy sources. Moniz mentioned better siting methods, improved drivetrains, and longer blades. On the show floor, companies are certainly bringing some new and improved technologies to the wind market.  Click here for the full Summary from WindPower Engineering.

Used cigarette butts offer energy storage solution

Scientists in South Korea have developed a new way to store energy that also offers a solution to a growing environmental problem.
Reporting their findings in the IOP Publishing journal Nanotechnology, the research team successfully converted used cigarette butts into a high performing material that could be integrated into computers, handheld devices, electric vehicles and wind turbines to store energy.
According to the study, this material outperforms commercially available carbon, graphene and carbon nanotubes. It may someday be used to coat the electrodes of supercapacitors: electrochemical components that can store extremely large amounts of electrical energy.
"Our study has shown that used cigarette filters can be transformed into a high performing carbon-based material using a simple one step process, which simultaneously offers a green solution for meeting the energy demands of society," says co-author Professor Jongheop Yi of Seoul National University.

MIT Group Used Solar Energy To Make Salty Water Drinkable In Off-Grid Areas

By Eleanor Goldberg for The Huffington Post:  ​While there are many technologies out there than can effectively remove salt from water to make it drinkable, most are expensive and rely heavily on electricity –- rendering them all but useless in remote, off-grid villages.
That’s why a group of engineers from MIT, backed by Jain Irrigation Systems, set out to invent a system that relies on solar energy to bring clean drinking water to rural areas in India, The Washington Post reported.
About 21 percent of India’s communicable diseases are related to unsafe water, according to the World Bank. According to MIT researchers 60 percent of India has brackish groundwater -- while not toxic, that water is too salty to be ideal for human consumption.
The group, which took home the first-place Desal Prize last month in the “Securing Water for Food” challenge, used a method called electrodialysis, which relies on electricity and ultraviolet rays, according to the aid organization.
The first-place winners were awarded a $140,000 grant.  Cont'd...

Records 211 to 225 of 1145

First | Previous | Next | Last

Featured Product

Roof Tech – E Mount AIR

Roof Tech - E Mount AIR

The most compact versatile rail-less PV mounting system under the sun. Instead of placing solar panels on top of long rails, simply attach E Mount AIR to rafters or the roof decking. Once panels are fastened to the roof, the system array is electrically bonded. The result is a visually seamless PV installation that stands the test of time. - Truly "One With The Roof". - PE stamped cert. letters available, UL 2703 Classified, ASTM 2140 fully waterproof. The one and only with integrated flexible flashing certified by the ICC! All the best quality. Only from Roof Tech