Solar cloth could stretch PV's applications

A British start-up has developed a way for parking lots and structures with roofs that can’t take much weight to harness the power of the sun.
 
The Cambridge, England-based Solar Cloth Company is beginning to run trials of its solar cloth, which uses lightweight photovoltaic fabric that can be stretched across parking lots or on buildings that can’t hold heavy loads, such as sports stadiums with lightweight, retractable roofs. Perry Carroll, Solar Cloth Company’s founder, told BusinessGreen that the company is working to close deals to install solar cloth on 27,000 parking lots.
 
“We have built a growing sales pipeline worth £4.2m [about $US6.57 million] for 2015, including park and ride projects, airport parking operators and retail park owners,” he said.
 
According to Solar Cloth Company, there are about 320 square miles of roof space and 135 square miles of parking space in the UK that could be covered by solar cloth, and if all of these spaces were covered, the solar power produced would be enough to power the UK’s grid three times.

Wind energy provides more than 2/3 of new US capacity in October

According to the latest "Energy Infrastructure Update" report from the Federal Energy Regulatory Commission's (FERC) Office of Energy Projects, wind power provided over two-thirds (68.41%) of new U.S. electrical generating capacity in October 2014. Specifically, five wind farms in Colorado, Kansas, Michigan, Nebraska, and Texas came on line last month, accounting for 574MW of new capacity. 
 
In addition, seven "units" of biomass (102MW) and five units of solar (31MW) came into service accounting for 12.16% and 3.69% of new capacity respectively. The balance came from three units of natural gas (132MW - 15.73%).
 
Moreover, for the eighth time in the past ten months, renewable energy sources (i.e., biomass, geothermal, hydropower, solar, wind) accounted for the majority of new U.S. electrical generation brought into service. Natural gas took the lead in the other two months (April and August).
 
Of the 9,903MW of new generating capacity from all sources installed since January 1, 2014, 34 units of wind accounted for 2,189MW (22.10%), followed by 208 units of solar - 1,801MW (18.19%), 45 units of biomass - 241MW (2.43%), 7 units of hydropower - 141MW (1.42%), and 5 units of geothermal - 32MW (0.32%). In total, renewables have provided 44.47% of new U.S. electrical generating capacity thus far in 2014.

Why Google halted its research into renewable energy

Back in 2007, Google had a very simple idea for addressing global warming — we just need to take existing renewable-energy technologies and keep improving them until they were as cheap as fossil fuels. And, voila! Problem solved.
 
That was the logic behind the company's RE-C project, which aimed to produce one gigawatt of renewable electricity for less than the price of coal. The hope was to do this within years, not decades. Among other things, the company invested in new geothermal drilling R&D and put $168 million toward Brightsource's Ivanpah solar tower in the Mojave Desert.
 
By 2011, however, Google decided that this "moon shot" energy initiative wasn't going to work out as planned and shut things down. So what happened?
 
In a long essay at IEEE Spectrum, two Google engineers on the project — Ross Koningstein and David Fork — explain the thinking behind the closure. It's not that Google has given up on renewable energy. (The company still spends many millions of dollars buying wind energy for its servers.) Partly it's that they simply weren't on track to achieve their specific goals.
 
But, more interestingly, the project also made the engineers realize that their original clean-energy goal wasn't nearly ambitious enough.  Cont'd...

SunEdison, TerraForm to buy First Wind for $2.4B

Solar company SunEdison and unit TerraForm Power said they would buy First Wind for $2.4 billion to enter the U.S. wind power market.
 
SunEdison's shares rose 6.6 percent to $17.70, while TerraForm shares rose 1.2 percent to $26.15 in after-market trading.
 
The deal comprises $1.9 billion in upfront payment and $510 million in earn-outs, the companies said.
 
Boston-based First Wind is operating or building renewable energy projects in the Northeast, the West and Hawaii, with a combined capacity of nearly 1,300 megawatts (MW) - enough to power more than 425,000 homes each year.
 
SunEdison raised its 2015 installation forecast to 2.1-2.3 gigawatts (GW) from 1.6-1.8 GW. TerraForm increased its 2015 dividend forecast to $1.30 per share from 90 cents.
 
TerraForm was created by SunEdison to own and operate its solar power plants. TerraForm went public in July.
 
The deal is expected to close during the first quarter of 2015, the companies said.

 

Denmark Aims for 100 Percent Renewable Energy

Denmark, a tiny country on the northern fringe of Europe, is pursuing the world’s most ambitious policy against climate change. It aims to end the burning of fossil fuels in any form by 2050 — not just in electricity production, as some other countries hope to do, but in transportation as well.
 
Now a question is coming into focus: Can Denmark keep the lights on as it chases that lofty goal?
 
Lest anyone consider such a sweeping transition to be impossible in principle, the Danes beg to differ. They essentially invented the modern wind-power industry, and have pursued it more avidly than any country. They are above 40 percent renewable power on their electric grid, aiming toward 50 percent by 2020. The political consensus here to keep pushing is all but unanimous.
 
Their policy is similar to that of neighboring Germany, which has spent tens of billions pursuing wind and solar power, and is likely to hit 30 percent renewable power on the electric grid this year. But Denmark, at the bleeding edge of global climate policy, is in certain ways the more interesting case. The 5.6 million Danes have pushed harder than the Germans, they have gotten further — and they are reaching the point where the problems with the energy transition can no longer be papered over.

U.S. Department Of Energy Loan Program Breaks Even

The controversial government program that funded failed solar company Solyndra, and became a lighting rod in the 2012 presidential election, is officially in the black.
 
According to a report by the Department of Energy, interest payments to the government from projects funded by the Loan Programs Office were $810 million as of September - higher than the $780 million in losses from loans it sustained from startups including Fisker Automotive, Abound Solar and Solyndra, which went bankrupt after receiving large government loans intended to help them bring their advanced green technologies to market.
 
The report's findings are more of a political victory than a financial one. It took the program three years to break even after Solyndra's failure, while during that same time the Standard & Poor's 500 index increased 67 percent.
 
Still, the federal loans program is a success for taxpayers, judging by the numbers in the new report, the DOE said. After Solyndra's 2011 collapse, the program was sharply criticized by Republican lawmakers as a waste of public money and a fountain of cronyism. The outcries mounted as others in the program failed, and the DOE issued no new loans between late 2011 and this year.
 
"Taxpayers are not only benefitting from some of the world's most innovative energy projects... but these projects are making good on their loan repayments," Peter Davidson, executive director of the Loan Programs Office, said in an interview on Wednesday. Davidson took over the loan program in May of 2013.

U.S.-China smackdown: America No. 1 in wind power

Climate-conscious Americans have long glanced enviously across the Pacific to China and its ever-growing number of often-gargantuan wind farms.
 
It turns out that they have less to be jealous about than previously thought: The United States has more wind energy powering its grid than any other country in the world, says a report by EDF Renewable Energy, the largest third-party provider of operations and maintenance for wind renewable-energy projects in the country.
 
Though China has more megawatts of wind turbines installed than the U.S—about 90,000 to America's 60,000—the U.S. actually produces more electricity that is delivered to the grid, which in turn reaches more businesses and homes. And while China's wind industry delivered less than 138 billion kilowatt-hours in 2013, the U.S.'s delivered more than 167 billion.
 
That's 20 percent more than China. And the U.S.'s generation has been growing steadily since 2008, when it first overtook Germany to become the world's No. 1 producer.

Why Google, Microsoft and Yahoo are buying up wind energy

Google, Yahoo and Microsoft are part of a growing number of tech and other major companies that are entering into long-term “power purchase” agreements (PPAs) with wind farms to ensure a steady stream of power, at a fixed cost, over a period as long as several decades. Most recently, last month Yahoo signed such a deal for wind power in the Great Plains with OwnEnergy, a wind energy developer.
 
Google -- which is already carbon neutral and now trying to power itself with “100 percent renewable energy” -- has the longest history here. It has three PPA deals in the U.S. wind sector (in Iowa, Oklahoma, and Texas), and two more in Sweden. Microsoft, meanwhile, currently has two PPA deals with wind installments located near its data centers in Texas and Illinois. The agreements provide 285 megawatts of power to help drive both Bing searches and also its other online platforms, according to Brian Janous, the company’s director of energy strategy.
 
What these deals have in common is that they involve purchasing clean energy in close proximity to the power hungry data centers that these companies operate -- data centers that in turn drive searches, apps like Gmail and much more. “These are very energy intensive operations that these companies are planning on running for years, and they know they need electricity,” says Emily Williams of the American Wind Energy Association.

Brazil gives go-ahead to 31 solar parks in push for new energy

Brazil finally entered the solar power sector on Friday, granting contracts for the construction of 31 solar parks as it tries to diversify its sources of generation amid an energy crisis caused by the worst drought in eight decades.
 
Brazil's energy regulator, Aneel, concluded its first exclusive solar power auction on Friday, clinching 20-year energy supply contracts with companies that will invest 4.14 billion reais ($1.67 billion) and start to feed the national grid in 2017.
 
The 31 solar parks, the first large-scale solar projects to be constructed in Brazil, will have a combined installed capacity of 1,048 megawatts (MW). Market expectations were for projected total awards of 500 MW.
 
"This auction is a mark, not only because it signals the entrance of solar power in the Brazilian energy mix, but because it was one of the most competitive to date," said Mauricio Tolmasquim, head of the government's energy research company, EPE.
 
The auction lasted more than eight hours. The final price for solar power came at around 220 reais ($89) per megawatt-hour, against an initial price of 262 reais ($106), an 18 percent discount.
 
"This is one of the lowest prices for solar energy in the world," Tolmasquim said.

Siemens developing thermal energy storage system

Siemens is developing a system of storing thermal energy in rocks with the aim of using it to harness excess power from wind turbines.

A spokesperson told Windpower Monthly that the project is in the early stages of development and there is no specific timescale for the construction of a prototype of the system.
 
He said the system would be scaleable for use on site at different projects.
 
The company was unwilling to reveal specific technical details about the process, but said it relied on established technology.
 
The storage of heat in rocks has been used as a method of energy retention for some time. But Siemens' system will transform the stored thermal energy back into electricity rather than use it for heating.
 
This would be done in a "conventional manner" the spokesperson said. The captured heat would be used to create steam to generate electricity through steam turbines.

 

Power storage group Alevo plan 1bn US battery plant

Could a long-vacant cigarette factory in North Carolina build the rechargeable battery that will unlock the future of the clean energy economy?
 
The Swiss-based Alevo Group launched the new battery technology on Tuesday. After spending $68.5m (£42.5m) for the factory, the group said it would spend up to $1bn to develop a system that would get rid of waste on the grid and expand the use of wind and solar power.
 
The project, a joint venture with state-owned China-ZK International Energy Investment Co, aims to ship its first GridBank, its patented battery array, to Guangdong Province this year, going into production on a commercial scale in mid-2015.
 
The container-sized arrays store 2MW and would be installed on-site at power plants.
 
Jostein Eikeland, Alevo’s chief executive, said in an interview that the company had an agreement with the Turkish state power authority, and was in discussions with US power companies.
 
“It’s a gamechanger,” he said.
 
“If we can take some of the massive energy that is wasted today by mismanagement of the grid and inject it where it is needed, everybody wins,” said Eikeland.
 
Eikeland said the company would create 2,500 jobs at the factory in Concord over the next three years.

SolarWorld announces expansions of solar panel and advanced cell production in Oregon

SolarWorld, the largest crystalline silicon solar producer in the Americas for nearly 40 years, announced that in 2015, it would add a solar-panel production line in Hillsboro to bring the panel-assembly factory's capacity up to 530 megawatts (MW), expand advanced cell production capacity by 100 MW and add 200 jobs. 

"It is no secret that the last several years have been tough for SolarWorld and for U.S. solar manufacturers in general," SolarWorld U.S. President Mukesh Dulani said. "However, thanks to a variety of factors, including our trade cases against China, difficult but necessary financial controls and a fantastic group of employees, we have turned the corner. Today's announcement shows that SolarWorld is not only here to stay, but it also is ready to extend our leadership in the American solar manufacturing industry." 
 
Dulani was joined at a morning news conference by U.S. Sen. Ron Wyden (D-Ore.), chairman of the U.S. Senate Committee on Finance. Sen. Wyden received a commemorative plaque thanking him for his years of support for SolarWorld and its workers during the cases. He also spoke at a SolarWorld employee forum after the news conference. 

Sunrun, OutBack Power Pilot Renewable Energy Storage Systems For Homeowners

Sunrun, the largest dedicated residential solar company in the United States, today announced a partnership with OutBack Power Technologies, Inc. to pilot renewable energy storage-based systems for a select group of Sunrun solar customers. OutBack Power is a designer and manufacturer of power conversion systems incorporating energy storage for off-grid and grid-connected renewable energy applications. As part of the pilot, Sunrun will combine and test OutBack Power's technology consisting of weather-resistant batteries and inverters with home solar systems in both indoor and outdoor environments. 

"It is now more affordable than ever for consumers to run their homes with clean power, and we strongly believe that the next evolution of solar as a service for our customers is home solar paired with energy storage," said Sunrun's chief operating officer, Paul Winnowski. "With OutBack Power, we will further our commitment to providing customized and affordable home solar that allows customers to be a part of the solution for building a clean, modern grid that provides power when it is needed the most." 

Why Is There So Much Confusion About "Small Wind"?

Have you ever noticed energy blogs or articles about small wind turbines comparing them directly with big wind technology and solar? I am writing this article to provide a little background on where small wind turbines can be very successful and where they make absolutely no sense. It also explains why the market for “Small Wind” is vastly different from that of “Big Wind.”
 
First of all, “Small Wind” has been defined by the American Wind Energy Association (AWEA) as any turbines under 100 kW of rated power. As we all know, 100 kW wind turbines aren’t small! Therefore, others have decided to define them as anything up to 10 kW. For the purpose of this article, we use the same definition as AWEA, up to 100 kW.

Battery Backup for Rooftop Solar Power Systems Too Costly

Using batteries to retain energy from rooftop solar systems will be too expensive for at least two years, according to industry executives.
 
That means homeowners who add solar panels to save money on utility bills will continue to lose electricity during blackouts, even after an 80 percent decline in battery costs over the past decade.
 
Residential solar systems typically send power to the grid, not directly to the house, and don’t run the home during a blackout. For batteries to save consumers money, stored energy must be drained daily, said Jamie Evans, who runs the U.S. Eco Solutions unit for Panasonic Corp., which supplies lithium-ion cells for Tesla Motors Inc.
 
“Solar will need storage for grid stability,” Evans said yesterday in an interview at the Solar Power International convention in Las Vegas. “Battery costs need to come down and regulatory structures have to change to really scale up.”
 
As residential solar become more common from California to New York, utility grids will increasingly become stressed without storage to ease supply and demand imbalances, he said.
 
For now, that means battery storage only makes economic sense for large businesses that get hit with extra fees when their power usage exceeds utility expectations.

 

Records 316 to 330 of 1166

First | Previous | Next | Last

Featured Product

Sun Bandit - Solar Hybrid Energy Systems

Sun Bandit - Solar Hybrid Energy Systems

Sun Bandit® is a revolutionary new way in which solar is used to heat water. This innovative new technology utilizes PV technology to deliver clean, reliable hot water by putting the free energy of the sun to work for you in ways that makes owning a solar system more practical and affordable than ever before. Achieving energy independence has never been easier than with a Sun Bandit® Solar Hybrid Energy System. Sun Bandit® patented technologies eliminates the need for complex solar mechanical water heating and replaces it with clean, simple to install and easy to enjoy PV technology to effectively and efficiently provide hot water. With advance micro grid technology and design, Sun Bandit® can deliver hot water even when the grid goes down. Sun Bandit® is the simplest solar hot water solution on the market, providing the most easy-to-use and economical way to go solar.