"Designer carbon" boosts battery performance

Mark Shwartz, Stanford Univ.:  Stanford Univ. scientists have created a new carbon material that significantly boosts the performance of energy-storage technologies. Their results are featured in ACS Central Science.
"We have developed a 'designer carbon' that is both versatile and controllable," said Zhenan Bao, the senior author of the study and a professor of chemical engineering at Stanford. "Our study shows that this material has exceptional energy-storage capacity, enabling unprecedented performance in lithium-sulfur batteries and supercapacitors."
According to Bao, the new designer carbon represents a dramatic improvement over conventional activated carbon, an inexpensive material widely used in products ranging from water filters and air deodorizers to energy-storage devices.
"A lot of cheap activated carbon is made from coconut shells," Bao said. "To activate the carbon, manufacturers burn the coconut at high temperatures and then chemically treat it."
The activation process creates nanosized holes, or pores, that increase the surface area of the carbon, allowing it to catalyze more chemical reactions and store more electrical charges.

Used cigarette butts offer energy storage solution

Scientists in South Korea have developed a new way to store energy that also offers a solution to a growing environmental problem.
 
Reporting their findings in the IOP Publishing journal Nanotechnology, the research team successfully converted used cigarette butts into a high performing material that could be integrated into computers, handheld devices, electric vehicles and wind turbines to store energy.
According to the study, this material outperforms commercially available carbon, graphene and carbon nanotubes. It may someday be used to coat the electrodes of supercapacitors: electrochemical components that can store extremely large amounts of electrical energy.
"Our study has shown that used cigarette filters can be transformed into a high performing carbon-based material using a simple one step process, which simultaneously offers a green solution for meeting the energy demands of society," says co-author Professor Jongheop Yi of Seoul National University.

Tesla's New Powerwall Packs a Powerful Punch

Ryan Wallace for The Science Times:  Known as the "Powerwall", Tesla's newest invention is a thin, wall-mounted battery that is the size of a flat screen TV. And with this new battery home owners who have already invested in solar power will be able to entirely go off the grid, and even to sell their excess solar juice back to energy companies.

Developed in conjunction with the lithium-ion batteries that Tesla uses for its electric vehicles, the Powerwall unit is an inexpensive unit, only running $3,000 to $3,500, and with it Musk and his companies believe that humans may one day be able to transition to solely using energy derived from the Sun. Though the installation may look like an artpiece, it packs quite a punch at 10 kWh, and with it consumers will not only be able to store their energy for dark solar-free nights, but also more efficiently contribute to global energy use by contributing carbon-free energy back into the mix.
 

Elon Musk's big announcement: it's called 'Tesla Energy'

Late Thursday night in Los Angeles, Tesla announced "Tesla Energy," described by the company in a statement as "a suite of batteries for homes, businesses, and utilities fostering a clean energy ecosystem and helping wean the world off fossil fuels."
 
The statement continued: "Tesla is not just an automotive company, it’s an energy innovation company. Tesla Energy is a critical step in this mission to enable zero emission power generation."
 
Tesla CEO Elon Musk made the official announcement onstage at the company's design studio in Hawthorne, CA, just south of LA.
 
The home battery, call the "Powerwall," is intended to store solar energy and enable customers to bank grid electricity from non-peak periods and use it during peak times, saving money. It looks "like a beautiful piece of sculpture," Musk said. You can order it now, and it comes in different colors.
 
"The Tesla Powerwall is a rechargeable lithium-ion battery designed to store energy at a residential level for load shifting, backup power and self-consumption of solar power generation," Tesla said.
 
"The Powerwall consists of Tesla’s lithium-ion battery pack, liquid thermal control system and software that receives dispatch commands from a solar inverter. The unit mounts seamlessly on a wall and is integrated with the local grid to harness excess power and give customers the flexibility to draw energy from their own reserve."

Toshiba Begins Operation of Independent Energy Supply System Utilizing Renewable Energy and Hydrogen

Toshiba Corporation announced the start of demonstration operation of H2One, an independent energy supply system based on renewable energy and use of hydrogen as a fuel for power generation. Kawasaki City and Toshiba have installed the system at the Kawasaki Marien public facility and Higashi-Ogishima-Naka Park in the Kawasaki Port area.
 
H2One combines photovoltaic installations, storage batteries, hydrogen-producing water electrolysis equipment, hydrogen and water tanks, and fuel cells. Electricity generated from the photovoltaic installations is used to electrolyze water and produce hydrogen, which is then stored in tanks and used in fuel cells that produce electricity and hot water.
 
Since H2One uses only sunlight and water for fuel, it can independently provide electricity and hot water in times of emergency, even when lifelines are cut. Kawasaki Marien and Higashi-Ogishima-Naka Park, a municipal facility to promote Kawasaki Port, is a designated emergency evacuation area. In times of disaster, H2One will use stored hydrogen to provide an estimated 300 evacuees to the site with electricity and hot water for about one week. The H2One system is housed in a container, and can be transported to disaster-hit areas on trailers.

The $5 Billion Race to Build a Better Battery

Professor Donald Sadoway remembers chuckling at an e-mail in August 2009 from a woman claiming to represent Bill Gates. The world’s richest man had taken Sadoway’s Introduction to Solid State Chemistry online, the message explained. Gates wondered if he could meet the guy teaching the popular MIT course the next time the billionaire was in the Boston area, Bloomberg Markets magazine will report in its May issue.  “I thought it was a student prank,” says Sadoway, who’s spent more than a decade melting metals in search of a cheap, long-life battery that might wean the world off dirty energy. He’d almost forgotten the note when Gates’s assistant wrote again to plead for a response.
 
A month later, Gates and Sadoway were swapping ideas on curbing climate change in the chemist’s second-story office on the Massachusetts Institute of Technology campus. They discussed progress on batteries to help solar and wind compete with fossil fuels. Gates said to call when Sadoway was ready to start a company. “He agreed to be an angel investor,” Sadoway says. “It would have been tough without that support.”
 

Sadoway is ready. He and a handful of scientists with young companies and big backers say they have a shot at solving a vexing problem: how to store and deliver power around the clock so sustainable energies can become viable alternatives to fossil fuels.  How these storage projects are allowing utility power customers to defect from the grid is one of the topics for debate this week at the Bloomberg New Energy Finance conference in New York. Today’s nickel-cadmium and lithium-ion offerings aren’t up to the task. They can’t run a home for more than a few hours or most cars for more than 100 miles (160 kilometers). At about $400 per kilowatt-hour, they’re double the price analysts say will unleash widespread green power. “Developing a storage system beyond lithium-ion is critical to unlocking the value of electric vehicles and renewable energy,” says Andrew Chung, a partner at Menlo Park, California–based venture capital firm Khosla Ventures.

Tesla's New Product Secretly Tested By 330 Consumers

From Benzinga: Global Equities Research analyst Trip Chowdhry has revealed some interesting information about Tesla Motors Inc 's new product line.
 
Outside of the fact that it will not be a car, very little is known about what Tesla plans to announce. Some experts think it could be a motorcycle. Others assume that it will be an in-home battery that involves solar energy.
 
If Chowdhry's information is correct, it seems that Tesla is ready to launch the latter.
 
In a note to investors, Chowdhry said that he knows of two people that own a residential battery from Tesla. He spoke to one of those owners and detailed the following bullet points:
 
  • "There are about 230 Households in California, who currently have Tesla Stationary Battery installed in their Homes. Another about 100 Households are out of California.
  • This customer had the Tesla Stationary Battery for about One and a Half years, and is installed in his garage."
Last year, Chowdhry attended a sustainability conference and learned that Google Inc is "widely believed" to have a few Tesla (commercial-grade) batteries in some of its buildings. Apple Inc. might also purchase some of these batteries for its new campus.
 
Chowdhry believes that Tesla's commercial-grade batteries are rated at more than 400 kWh.

Solar eclipse illuminates importance of energy storage

Friday's solar eclipse highlights the importance of energy storage to the continued growth of solar, experts have claimed. 
 
Energy consultancy Frost & Sullivan estimate that by covering 85% of the sun; the eclipse removed 35GW of solar power from the European grid - equivalent to 80 conventional power plants. 
 
This sort of instability will drive generators to invest in better storage facilities to ensure a constant security of supply, according to the consultants. 
 
"Dealing with events like this one requires investment in various storage tools and monitoring techniques which create a certain amount of flexibility in the energy system," said the report. 
 
The nascent technology of pump storage - pumping water uphill into large reservoirs when power is abundant and then letting it flow down again to generate power when needed - will reportedly be valuable in preparing for the eclipse in Germany. 

MPower To Build Australia's Largest Energy Storage System

ydney-based energy investment group Tag Pacific has today announced it has won a landmark deal to deliver Australia’s largest energy storage system to be operated alongside the University of Queensland-owned Gatton solar power plant in south-east Queensland.

The battery storage project, valued at around $2 million, was won by Tag’s wholly owned power business MPower, which is also working with Rio Tinto and First Solar in the remote town of Weipa, Queensland, to build an ARENA-supported 1.7MW solar PV project, which will serve a remote bauxite mining operation and could be expanded to 6.7MW
 
The newly announced energy storage project, will be grid connected; a slightly different tack for MPower, which has tended to specialise in remote, and off-grid solar plus storage hybrid systems.

 

Groundbreaking technology stores wind power in salt caverns

In the Lloydminster area, a Calgary company is ready to carve out large underground salt caverns to store excess wind energy — the first use of the technology in Canada.
 
Rocky Mountain Power president Jan van Egteren says the storage sites could be ready in five years.
 
Salt caverns have been used to store natural gas for years, but only two other projects in North America are using them for compressed air that is turned into electricity.
 
The caverns are carved out by pumping water deep down to dissolve the underground salt layer peculiar to the Lloydminster area.
 
Excess wind electricity would be used to pump compressed air into caverns about the size of a 60-storey building. The salt walls allow very little to escape. Then, when the wind dies, the compressed air is released and used to turn a generator to make electricity.
 
The cavern could store enough compressed air to provide electricity for five days to a city the size of Red Deer, says van Egteren.
 
“It could really help stabilize the grid by taking off power when the wind is really blowing.”

Siemens developing thermal energy storage system

Siemens is developing a system of storing thermal energy in rocks with the aim of using it to harness excess power from wind turbines.

A spokesperson told Windpower Monthly that the project is in the early stages of development and there is no specific timescale for the construction of a prototype of the system.
 
He said the system would be scaleable for use on site at different projects.
 
The company was unwilling to reveal specific technical details about the process, but said it relied on established technology.
 
The storage of heat in rocks has been used as a method of energy retention for some time. But Siemens' system will transform the stored thermal energy back into electricity rather than use it for heating.
 
This would be done in a "conventional manner" the spokesperson said. The captured heat would be used to create steam to generate electricity through steam turbines.

 

Sunrun, OutBack Power Pilot Renewable Energy Storage Systems For Homeowners

Sunrun, the largest dedicated residential solar company in the United States, today announced a partnership with OutBack Power Technologies, Inc. to pilot renewable energy storage-based systems for a select group of Sunrun solar customers. OutBack Power is a designer and manufacturer of power conversion systems incorporating energy storage for off-grid and grid-connected renewable energy applications. As part of the pilot, Sunrun will combine and test OutBack Power's technology consisting of weather-resistant batteries and inverters with home solar systems in both indoor and outdoor environments. 

"It is now more affordable than ever for consumers to run their homes with clean power, and we strongly believe that the next evolution of solar as a service for our customers is home solar paired with energy storage," said Sunrun's chief operating officer, Paul Winnowski. "With OutBack Power, we will further our commitment to providing customized and affordable home solar that allows customers to be a part of the solution for building a clean, modern grid that provides power when it is needed the most." 

Battery Backup for Rooftop Solar Power Systems Too Costly

Using batteries to retain energy from rooftop solar systems will be too expensive for at least two years, according to industry executives.
 
That means homeowners who add solar panels to save money on utility bills will continue to lose electricity during blackouts, even after an 80 percent decline in battery costs over the past decade.
 
Residential solar systems typically send power to the grid, not directly to the house, and don’t run the home during a blackout. For batteries to save consumers money, stored energy must be drained daily, said Jamie Evans, who runs the U.S. Eco Solutions unit for Panasonic Corp., which supplies lithium-ion cells for Tesla Motors Inc.
 
“Solar will need storage for grid stability,” Evans said yesterday in an interview at the Solar Power International convention in Las Vegas. “Battery costs need to come down and regulatory structures have to change to really scale up.”
 
As residential solar become more common from California to New York, utility grids will increasingly become stressed without storage to ease supply and demand imbalances, he said.
 
For now, that means battery storage only makes economic sense for large businesses that get hit with extra fees when their power usage exceeds utility expectations.

 

SCE Unveils Largest Battery Energy Storage Project in North America

For Southern California Edison (SCE), building a smarter grid started many years ago with smart meters and upgrades in distribution equipment. Today, the company takes another leap forward with the opening of the largest battery energy storage project in North America — the Tehachapi Energy Storage Project — to modernize the grid to integrate more clean energy. 

The demonstration project is funded by SCE and federal stimulus money awarded by the Department of Energy as part of the American Recovery and Reinvestment Act of 2009. 

The 32 megawatt-hours battery energy storage system features lithium-ion batteries housed inside a 6,300 square-foot facility at SCE's Monolith substation in Tehachapi, Calif. The project is strategically located in the Tehachapi Wind Resource Area that is projected to generate up to 4,500 MW of wind energy by 2016. 

"This installation will allow us to take a serious look at the technological capabilities of energy storage on the electric grid," said Dr. Imre Gyuk, energy storage program manager in the energy department's Office of Electricity Delivery and Energy Reliability. "It will also help us to gain a better understanding of the value and benefit of battery energy storage." 

The project costs about $50 million with matching funds from SCE and the energy department. Over a two-year period, the project will demonstrate the performance of the lithium-ion batteries in actual system conditions and the capability to automate the operations of the battery energy storage system and integrate its use into the utility grid. 

AES Betting On Lithium-Ion Batteries for Long-Duration Energy Storage

When it comes to storing energy at the scale of the power grid, lithium-ion batteries have a lot of advantages -- and, critics say, some significant drawbacks.

Sure, lithium-ion is the dominant battery chemistry for consumer electronics and electric vehicles, which helps drive down costs and improve bankability for grid projects (see Tesla’s Giga factory for an example of how this future could unfold). And yes, they’ve been proven in many grid-tied projects around the world.

But there are two questions that continue to dog the potential for lithium-ion batteries at grid scale. Can they provide hours of energy at a time to serve grid needs, and can they last for the decade or more required for cost-effective grid use when they’re being discharged so deeply, over and over, day after day?  Cont'd...

Records 91 to 105 of 115

First | Previous | Next | Last

Energy Storage & Distribution - Featured Product

OutBack Power - Radian series Inverter/Charger and Integrated Battery Rack

OutBack Power - Radian series Inverter/Charger and Integrated Battery Rack

Off-grid or on-grid, system designers and installers now have a comprehensive power conversion and storage solution from the name they trust: OutBack. Engineered from the ground up, OutBack's preassembled systems make balance-of-system components easier to specify and install in any residential or commercial installation. The Radian packs over 8,000 Watts of pure sine-wave continuous power and can be stacked into an 80 kW configuration for larger applications. The Integrated Battery Rack (IBR) is a 28.8 kWh one-box solution with all electrical connections made at the factory and shipped fully-assembled (without batteries) for quick connection on the jobsite.