Distributed Generation Technologies: Applications and Challenges

The practice of installing and operating electric generating equipment at or near the site of where the power is used is known as "distributed generation" (DG).

The practice of installing and operating electric generating equipment at or near the site of where the power is used is known as "distributed generation" (DG). Distributed generation provides electricity to customers on-site or supports a distribution network, connecting to the grid at distribution level voltages.


The traditional model of electricity generation in the United States, which may be referred to as "central" generation, consists of building and operating large power plants, transmitting the power over distances and then having it delivered through local utility distribution systems.

The practice of installing and operating electric generating equipment at or near the site of where the power is used is known as "distributed generation" (DG). Distributed generation provides electricity to customers on-site or supports a distribution network, connecting to the grid at distribution level voltages. DG technologies include engines, small (and micro) turbines, fuel cells, and photovoltaic systems.

Distributed generation may provide some or all of customers' electricity needs. Customers can use DG to reduce demand charges imposed by their electric utility or to provide premium power or reduce environmental emissions. DG can also be used by electric utilities to enhance their distribution systems. Many other applications for DG solutions exist.

With existing technology, every industrial or commercial facility including factories, campuses, hospitals, hotels, department stores, malls, airports, and apartment buildings can generate enough electricity to meet its power needs under normal conditions, as well as have back-up power during a blackout.

Distributed generation systems can provide an organization with the following benefits:

* Peak Shaving;
* On-site backup power during a voluntary interruption;
* Primary power with backup power provided by another supplier;
* Combined load heat and power for your own use;
* Load following for improved power quality or lower prices;
* To satisfy your preference for renewable energy

In conjunction with combined heat and power (CHP) applications, DG can improve overall thermal efficiency. On a stand-alone basis, DG is often used as back-up power to enhance reliability or as a means of deferring investment in transmission and distribution networks, avoiding network charges, reducing line losses, deferring construction of large generation facilities, displacing expensive grid-supplied power, providing alternative sources of supply in markets, and providing environmental benefits.

Power generation technologies have evolved significantly in the past decade, making DG much more efficient, clean, and economically viable.

Substantial efforts are being made to develop environmentally sound and cost-competitive small-scale electric generation that can be installed at or near points of use in ways that enhance the reliability of local distribution systems or avoid more expensive system additions. Examples of these distributed resources include fuel cells, efficient small gas turbines, and photovoltaic arrays.

This report on Distributed Generation Technologies takes an in-depth look at the industry and analyzes the various technologies that contribute to distributed generation in today's age. The report focuses on these technologies through case studies, examples, and equations and formulas. The report also contains analysis of the leading countries actively promoting distributed generation.

Featured Product

sonnenBatterie eco

sonnenBatterie eco

Sonnen's mission is to provide clean and affordable energy for all. As the first mainstream grid tied residential energy storage company in the world and with 24,000 sonnenBatterie systems installed worldwide, sonnen is a proven global leader in intelligent energy management solutions. The all-in-one sonnenBatterie smart energy storage solution easily integrates with new and existing solar installations to help homes manage their energy throughout the day-saving money, providing backup power, and maximizing the effective use of solar power day and night. Sonnen has won several awards for its energy innovations, including the 2017 Zayed Future Energy Prize, MIT's Technology Review's 50 Smartest Companies in 2016, Global Cleantech 100 for 2015-2017, Greentech Media's 2016 Grid Edge Award for Innovation, and Cleantech's 2015 Company of the Year Award in both Israel and Europe.