Clariant achieves a further milestone in the manufacture of second-generation bioethanol

Expanded raw material base for manufacture of cellulosic ethanol from agricultural residues ----- An important step toward international commercialization of sunliquid® technology ----- Sustainable biofuel reduces CO2 emissions by 95% without competing with food production

Muttenz, June 3, 2013 – Clariant, a world leader in specialty chemicals, is demonstrating the

international potential of its process for manufacturing sustainable biofuel through the expansion of sunliquid® technology to further agricultural residues. Following the opening of Germany's largest
demonstration plant for manufacturing ethanol from agricultural residues in July 2012, the
company now has new findings, which show that corn stover, the most valuable raw material in
North America, and sugarcane bagasse, a cellulose-rich by-product of sugar and ethanol production in Latin America and Asia, can also be converted efficiently in the process. European wheat straw
has primarily been used to date, and has delivered good results that have even exceeded the
expectations of the process developers in some aspects.

"Expanding the technology to other raw materials represents an important milestone in the
commercialization of our sunliquid process, extending it far beyond European borders," explains Dr. Hariolf Kottmann, CEO of Clariant. "In doing so, we are demonstrating that the process is flexible
for different raw materials, and can therefore also be used in key markets such as North America,
Latin America, and Asia." The high degree of efficiency of the process, independent of the raw
material used, is achieved largely through the use of raw material-specific, highly-optimized
enzymes, illustrating one of Clariant's core competences.

Clariant intends to market the sunliquid process internationally – making it vital that different raw
materials can be flexibly and effectively used in the process. Corn stover is primarily important in
North America, where 570 million tonnes of this plant residue are generated from the corn harvest
every year. In Brazil, ethanol production could be increased by some 50% compared to current levels
by using excess bagasse.

Using these plant residues means that there is no competition with food production or for
agricultural land. Cellulosic ethanol produced using the sunliquid process reduces greenhouse gas
emissions by around 95% compared to fossil fuels. Domestic production of this liquid fuel can also
reduce dependence on oil imports and generate economic growth in local markets.

The next step in commercializing this technology is the construction of the first commercial
production facility, with a capacity of some 50,000-150,000 tonnes per year, compared with around
1,000 tonnes at the existing pilot plant.

"In sunliquid, we have a mature technology that we now want to apply worldwide," explains Dr.
Markus Rarbach, Head of Start-up Business Biofuels & Derivatives. "We are currently assessing
potential partners and locations for the first production facility. Our business model ultimately
comprises issuing license packages for the full process."

Rarbach adds that long-term secure and stable political conditions are also an important
requirement in order for a project like this to achieve its entire potential.

Featured Product

SolarEdge Technologies - EV Charging Single Phase Inverter

SolarEdge Technologies - EV Charging Single Phase Inverter

The SolarEdge PV inverter combines sophisticated digital control technology with efficient power SolarEdge's EV charging single phase inverter offers homeowners the ability to charge electric vehicles up to six times faster than a standard Level 1 charger through an innovative solar boost mode that utilizes grid and PV charging simultaneously. This product is the world's first EV charger with an integrated PV inverter. Reducing the hassle of installing separately a standalone EV charger and a PV inverter, the EV charging inverter eliminates the need for additional wiring, conduit and a breaker installation. By installing an EV charger that is integrated with an inverter, no additional dedicated circuit breaker is needed, saving space and ruling out a potential upgrade to the main distribution panel. Whether you own an EV now or just want to be EV-ready, future-proof your home with SolarEdge.