Silicon solves problems for next-generation battery technology
Silicon – the second most abundant element in the earths crust – shows great promise in Li-ion batteries, according to new research from the University of Eastern Finland. By replacing graphite anodes with silicon, it is possible to quadruple anode capacity.
Silicon - the second most abundant element in the earths crust - shows great promise in Li-ion batteries, according to new research from the University of Eastern Finland. By replacing graphite anodes with silicon, it is possible to quadruple anode capacity.
Researchers from the University of Eastern Finland introduced new technology to Li-ion batteries by replacing graphite used in anodes by silicon. The study analysed the suitability of electrochemically produced nanoporous silicon for Li-ion batteries. It is generally understood that in order for silicon to work in batteries, nanoparticles are required, and this brings its own challenges to the production, price and safety of the material. However, one of the main findings of the study was that particles sized between 10 and 20 micrometres and with the right porosity were in fact the most suitable ones to be used in batteries. The discovery is significant, as micrometre-sized particles are easier and safer to process than nanoparticles. This is also important from the viewpoint of battery material recyclability, among other things. The findings were published in Scientific Reports.
"In our research, we were able to combine the best of nano- and micro-technologies: nano-level functionality combined with micro-level processability, and all this without compromising performance," Researcher Timo Ikonen from the University of Eastern Finland says. "Small amounts of silicon are already used in Tesla's batteries to increase their energy density, but its very challenging to further increase the amount," he continues.
Next, researchers will combine silicon with small amounts of carbon nanotubes in order to further enhance the electrical conductivity and mechanical durability of the material.
"We now have a good understanding of the material properties required in large-scale use of silicon in Li-ion batteries. However, the silicon weve been using is too expensive for commercial use, and thats why we are now looking into the possibility of manufacturing a similar material from agricultural waste, for example from barley husk ash," Professor Vesa-Pekka Lehto explains.
Featured Product
Canadian Solar - HiKuBlack - Black Backsheet & Frame (Mono)
Aesthetic appearance for residential systems: With black backsheet & black frame, Power range 380 ~ 405 W, Low power loss in cell connection. Enhanced reliability: · Low temperature coefficient (Pmax): -0.34 % / °C, LID LeTID less than 2.0%, Lower hot spot temperature, Better shading tolerance.