KIST: Eco-Friendly Hydrogen Fuel Cell Takes a Step towards Commercialization

- Simultaneously improved economy, enlargement and performance through revolutionary process design -

-Ministry of science and ICT stated that Dr. Jong-Ho Lee and Dr. Ho-Il Ji at the high temperature energy material research center developed a Protonic Ceramic Fuel Cell, PCFC that can be commercialized, with the help of Professor Dong Wook Shin from Hanyang University. The research results were published in October on Nature Energy (IF:46.859, JCR top 0.515%), an international energy technology journal. Fuel cells are devices that transform chemical energy directly into electrical energy, and has huge development potential as a future energy conversion device with its lack of waste production.


"The research results can be applied to more than just simple energy production, but also to fuel production and conservation as well as other various relative areas and industries. It will be the stepping stone for the improvement of future renewable energy availability."

Tweet this
Solid oxide fuel cells (SOFCs) are especially receiving a lot of attention with its high energy conversion efficiency and ability to use various types of fuel, and PCFCs especially are standing in the spotlight with expectation of high performance at lower operating temperature compared to conventional SOFCs. However, difficulty in fabrication of thin and dense electrolyte on a porous electrode which mainly originated from the refractory nature of proton conducting electrolyte hinders commercialization of PCFCs.

The KIST research team partnered with the Hanyang University research team to enhance the performance of PCFCs while simultaneously developing a method to produce the cells on a commercialized scale. During development, the teams systematically methodized a process to enable the familiarization of the electrolytes within the electrolyte-electrode assembly and also reduced the production process temperature, which is a world first. The entire process also utilized micro-wave procedure and screen-printing method which are adequate for the actual production processes owing to their high economic efficiency.

The PCFC consisting of an electrolyte layer with a thickness of 5μm, 5/100,000th of 1cm, and a surface area of 5x5cm2 showed 12 times enhancement on performance relative to the previous report. Since the performance was taken in real application conditions, it provided clear evidence for the possibility of the commercialization of the fuel cell, and thus has received a lot of recognition from specialists and industries.

Dr. Lee stated that "The research results can be applied to more than just simple energy production, but also to fuel production and conservation as well as other various relative areas and industries. It will be the stepping stone for the improvement of future renewable energy availability."

Featured Product

HPS EnduraCoilTM Cast Resin Medium Voltage Transformer

HPS EnduraCoilTM Cast Resin Medium Voltage Transformer

HPS EnduraCoil is a high-performance cast resin transformer designed for many demanding and diverse applications while minimizing both installation and maintenance costs. Coils are formed with mineral-filled epoxy, reinforced with fiberglass and cast to provide complete void-free resin impregnation throughout the entire insulation system. HPS EnduraCoil complies with the new NRCan 2019 and DOE 2016 efficiency regulations and is approved by both UL and CSA standards. It is also seismic qualified per IBC 2012/ASCE 7-10/CBC 2013. Cast resin transformers are self-extinguishing in the unlikely event of fire, environmentally friendly and offer greater resistance to short circuits. HPS also offers wide range of accessories for transformer protection and monitoring requirements.