Toshiba Begins Operation of Independent Energy Supply System Utilizing Renewable Energy and Hydrogen

Toshiba Corporation announced the start of demonstration operation of H2One, an independent energy supply system based on renewable energy and use of hydrogen as a fuel for power generation. Kawasaki City and Toshiba have installed the system at the Kawasaki Marien public facility and Higashi-Ogishima-Naka Park in the Kawasaki Port area.
 
H2One combines photovoltaic installations, storage batteries, hydrogen-producing water electrolysis equipment, hydrogen and water tanks, and fuel cells. Electricity generated from the photovoltaic installations is used to electrolyze water and produce hydrogen, which is then stored in tanks and used in fuel cells that produce electricity and hot water.
 
Since H2One uses only sunlight and water for fuel, it can independently provide electricity and hot water in times of emergency, even when lifelines are cut. Kawasaki Marien and Higashi-Ogishima-Naka Park, a municipal facility to promote Kawasaki Port, is a designated emergency evacuation area. In times of disaster, H2One will use stored hydrogen to provide an estimated 300 evacuees to the site with electricity and hot water for about one week. The H2One system is housed in a container, and can be transported to disaster-hit areas on trailers.

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

Dynapower - MAXIMIZE PRODUCTION AND REVENUES WITH SOLAR PLUS STORAGE

Dynapower - MAXIMIZE PRODUCTION AND REVENUES WITH SOLAR PLUS STORAGE

The addition of energy storage to an existing or new utility-scale PV installation allows system owners and operators the opportunity to capture additional revenues. Traditional storage plus solar applications have involved the coupling of independent storage and PV inverters at an AC bus or the use of multi-input hybrid inverters. An alternative approach - coupling energy storage to PV arrays with a DC-to-DC converter - can help maximize production and profits for existing and new utility-scale installations. DC-Coupled Utility-Scale Solar Plus Storage leads to higher round-trip efficiencies and lower cost of integration with existing PV arrays and at the same time, opens up new revenue streams not possible with traditional AC-coupled storage, including clipping recapture and low voltage harvesting, while being eligible for valuable tax incentives.