Wind turbine technology stores excess wind power for when gusts turn to breezes

Megan Treacy for TreeHugger:  A new technology developed by University of Nebraska-Lincoln electrical engineering doctoral student Jie Cheng solves both of those problems by harnessing the excess wind energy usually wasted as spillage and storing it for use when wind speeds dip, making wind turbines more efficient and consistent.

Cheng's system converts and directs the extra wind energy to an air compression tank, where the energy is stored until wind speeds dip below the maximum capacity. Using a rotary vane machine that is connected between the turbine's gearbox and generator, excess energy is diverted and stored in the air compression tank. When the wind dies down, the tank then kicks in and reverses airflow back to the rotary vane machine to generate electricity.

In a recent study of his prototype, Cheng found that a 250-kW system would produce an additional 3,830 kWh of electricity per week or an additional 16,400 kWh per month based on historical wind data from Springview, Nebraska. That extra electricity is about 18 times the monthly energy use of a typical American household.  Cont'd...

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

OMNISTAR GAS ANALYZER - Fast accurate analysis from % to sub-ppm in a compact, turnkey benchtop system.

OMNISTAR GAS ANALYZER - Fast accurate analysis from % to sub-ppm in a compact, turnkey benchtop system.

The Pfeiffer Vacuum OmniStar benchtop analysis system offers you a compact footprint, powerful software and Ethernet connectivity. It's the optimum solution for many real-time gas analysis applications. With the OmniStar, Pfeiffer Vacuum offers you a complete solution for gas analysis, in chemical processes, semiconductor industry, metallurgy, fermentation, catalysis, laser technology and environmental analysis. The turnkey OmniStar gas analysis system consists of heated, temperature-regulated gas inlet system, Quadrupole mass spectrometer, a dry diaphragm vacuum pump and HiPace turbopump. Unlike competing methods such as FTIR, OmniStar is suitable for qualitative and quantitative analysis of most gases.