Stabilizing battery storage

Morgan Sherburne for U of Michigan News:  An issue that has long plagued renewable energy facilities is how to efficiently store energy collected from sun or wind.

Now, University of Michigan and University of Utah chemists have developed an energy-storing molecule that is 1,000 times more stable than current compounds, potentially leading to a longer-lived, more efficient battery.

The researchers are working to develop industrial-scale batteries that can store large amounts of energy for deployment when the sun sets or the wind stops blowing.

Deep-cycle lead batteries or lithium ion batteries are already on the market, but each type presents challenges, including the significant environmental hazards of disposal. Also, these kinds of batteries wear out relatively quickly.  Cont'd...

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

S-5!® PVKIT™ 2.0 Solar Rooftop Solutions

S-5!® PVKIT™ 2.0 Solar Rooftop Solutions

The concept of combining PV arrays with standing seam metal roofing is growing-for good reasons. Metal roofs have a life expectancy of more than 40 years. Shouldn't the mounting system last as long? With S-5! zero-penetration attachment technology and PVKIT 2.0, the solarized metal roof is the most sustainable system available -and without compromising roof warranties! PVKIT 2.0 is the also the best solution for attaching PV modules directly to any exposed fastener metal roof.