Japan: The world's new star in solar power

Until recently less than 1% of Japan's electrical power output came from renewables. But following the catastrophe of Fukushima and the power blackouts that followed, Japan has seen an explosion in investment in alternatives. Solar, in particular, in this averagely photon-blessed country, has seen a seismic rise of late and is this year poised to become the world's largest solar market in volume after China. According to a report by energy analyst IHS on Japan's energy mix, Japan's solar installations jumped by "a stunning 270% (in gigawatts) in the first quarter of 2013." That means by the end of 2013 there will be enough new solar panels equal to the capacity of seven nuclear reactors. Such massive growth will allow Japan to surpass Germany and become the world's largest photovoltaics (PV) market in terms of revenue this year. "Japan is forecast to install $20 billion worth of PV systems in 2013, up 82% from $11 billion in 2012," IHS said. "In contrast, the global market is set for tepid 4% growth. The strong revenue performance for Japan this year is partly driven by the high solar prices in the country." Germany still leads with the total number of units and capacity, however, with its 32,192 megawatts. Japan is now closer to the U.S.'s 8,069 megawatts at 7,429 megawatts, according to London-based BNEF.

California Solar power generation hits record levels

With Southern California’s largest electric generating station broken and scheduled for removal, solar generation levels have reached a record level in California, state officials said Sunday. Solar power generation on California’s grid set a new all-time high output of 2,071 megawatts at 12:59 p.m. Friday, said officials at the California ISO, the state agency that balances customer demand on regulated power utilities with power generation from commercial vendors. That nearly equals the 2,250 megawatts of nuclear-powered generation that was lost in January, 2012, when small amounts of radiation began leaking from Southern California Edison’s San Onofre Nuclear Generating Station, at Camp Pendleton. San Diego Gas & Electric owns 20 percent of San Onofre, and has historically received one fifth of its power from the iconic nuclear plant, 65 miles north of San Diego. SDG&E has reassured its customers it can import sufficient replacement power from natural gas, wind and geothermal plants in the Imperial Valley via its new Sunrise Powerlink transmission line. The amount of solar energy generated on Friday was enough to power more than 1.5 million homes across California, Cal ISO officials said.

Innovative solar cell structure stores and supplies energy simultaneously

In a quest for a smaller, more self-sustaining solar power source, a UW-Madison electrical engineer has proposed a design for solar panels that can simultaneously generate power from sunlight and store power reserves for later, all within a single device. Hongrui Jiang and his students developed the idea, published in the journal Advanced Materials June 6. Jiang is the Vilas Distinguished Achievement Professor of electrical and computer engineering at UW-Madison and specializes in microscale devices. He and his students developed the technology as an offshoot of a National Institutes of Health grant to design a self-focusing contact lens that adapts to the eyes of adults suffering from presbyopia, a natural aging process that stiffens the lens and reduces the eye's ability to focus, especially at short distances. To power that contact lens, Jiang and his team have worked out a design that balances energy harvesting, storage and usage. "We needed a multi-functional and small-form-factor device in order to integrate it all into a single contact lens structure," says Jiang. The top layer of each photovoltaic cell is a conventional photo electrode, converting sunlight into electrons. During that conversion process, the electrons split off into two directions: most electrons flow out of the device to support a power load, while some are directed to a polyvinylidene fluoride polymer (PVDF) coated on zinc oxide nanowires. The PVDF has the high dielectric constant required to serve as an energy storage solution. "When there's no sunlight, the stored power will come back through the nano wires to power the load."

EU slaps levies on Chinese solar panel imports

The European Union announced Tuesday that it is imposing anti-dumping levies on imports of Chinese solar panels, in a move that could trigger a trade war between two of the world's largest economies. EU Trade Commissioner Karel De Gucht said the 27-nation bloc will impose a tariff of about 12% on the import of solar panels, cells and wafers from this week, increasing it to an average of 47% in August unless a settlement is reached with China in the next 60 days. China, the world's largest producer of solar panels, is accused by the EU of selling them below-cost — a tactic known as dumping — to corner the market. Its exports of solar panels to Europe totaled 21 billion euros in 2011. The cheap Chinese products are flooding the market and threaten to bring down EU manufacturers, De Gucht told journalists in Brussels. According to EU calculations, a fair sale price for Chinese solar panels should 88% higher than what they are currently being sold for.

A Floating Wind Tower Is Launched in Maine

One reason that offshore wind has not caught on in the United States is the steep cost of erecting a tower in the water, but researchers at the University of Maine tried another approach on Friday by launching a floating wind machine. It is the first offshore wind installation in United States waters, according to the Energy Department, which helped pay for it. The tower, launched in Brewer, Me., sits on three hollow concrete tubes and will be anchored in the Gulf of Maine. It is a mere 20 kilowatts in capacity, an amount of power that could be soaked up by a handful of big suburban houses on a hot summer day. But it is one-eighth the dimensions of the one the researchers hope to deploy in the next few years, a gigantic 6-megawatt model, with each blade as long as the wingspan of a Boeing 747. Because of its location, it will have two big advantages over machines on land, according to Habib J. Dagher, a professor of civil engineering at the university. Onshore wind machines produce most of their energy at night, when it is least valuable to utilities buying the power, but this one will catch the predictable, strong breezes that come up every sunny summer afternoon, he said, when the sun heats the land more than the sea, creating an onshore breeze.

Solar Industry Needs to Accelerate Growth to Impact Climate Change

We need to do what has been done many times before in human history at key tipping points - embrace change and do what must be done - move strongly toward a renewable and sustainable energy future. It is, in my opinion, the fastest, best and the cheapest way to get there.

Lincoln International's Solar Energy DealReader: Q1 2013

Solar market growth slowed in 2012, after setting a record pace in 2011. While the market stabilized solar is still becoming a larger source of power generation, expected to surpass 100 GW of cumulative installed capacity globally this year.

Using Elastomeric Roof Coatings to Resolve Existing Roof Systems & Solar PV Life Cycle Disparities

Installing a white reflective "Cool Roof" coating is an inexpensive solution to extend the existing roof service life and synchronize the roof with the solar array service life.

Hybrid (photovoltaic (electric) and thermal) Solar Panels

Our Combined Heat and Power (CHP) solar module provides up to 4 times more energy output (thermal and electric power) than any standard photovoltaic module.

Cleaning Carbon Dioxide from the Atmosphere

All though there could be huge advantages to directly extracting carbon dioxide from our atmosphere instead of from its source, there has been very little R&D funding to explore and make it a reality. By beginning the process of recycling CO2, America would be building the technology now for a sustainable hydrocarbon future.

The State of the U.S.Water Sector

Water management spurred by scarcity in the US is likely to produce new financing and business models, technological innovation and greater engagement of the public in proactively handling the world's most precious resource.

Ivanpah Project Is More Than 92 Percent Complete

To date, more than 153,990 of the project's total 173,500 heliostats have been installed. Several stunning photos below show recent progress at the site.

Empower America Enlists FIGTREE PACE to Help Service Veterans Transition from Combat Boots to Boots

Campaign Reminds Americans They Can Make EVERY Day Memorial Day by Hiring Solar-Trained Service Veterans Ready to Help Property Owners Slash Energy Costs and Drive American Energy Independence

Fracking and Solar: Friends, Foes or the Bridge to Clean Energy Adoption?

While treating gas as a 'bridge' to a low-carbon future, it is crucial not to allow the greater ease of the near-term task to erode efforts to prepare a landing at the other end of the bridge,

Cryogenic Energy Storage

In 2005, Highview Power Storage began researching the possibility of utility scale energy storage using liquid air. Excess energy (during low-demand times) is used to compress air into a liquid, which can then be stored in insulated low-pressure tanks. When demand exceeds production, the liquid air is warmed and the resulting steam is used to drive the turbine of a generator. According to Highview, cryogenic energy storage offers the following benefits: It uses proven technology that’s been been around for years. Regulations for cryogenic storage already exist. Storage is at low pressure, making tanks less costly. (Tanks are insulated to keep the liquid air cold, but they’re still less expensive than room-temperature compressed air storage tanks.) Air doesn’t explode and it’s non-toxic. Liquid air has four times the energy density of compressed air. During the storage process, ambient air is filtered to remove impurities. Water and CO2 are also removed because they’ll freeze solid. The resulting air is refrigerated. Some of the air condenses into a liquid at -196oC. That liquid air is stored in tanks. The remaining unliquified air is very cold, so it’s recycled and used to assist in the cooling process. During the recovery process, exhaust gas is added to heat the liquid air. When the liquid is gasified, it drives a steam engine that generates electricity. In the process of heating the liquid air, the exhaust gas is chilled to -160oC. The “cold” is stored in a gravel bed and later recovered to help the chilling process used during energy storage. This reduces the amount of work the compressor has to do, making the process more efficient. Read Tom Lombardo's Full Article.

Records 1561 to 1575 of 3361

First | Previous | Next | Last

Featured Product

Quickbase: The first application platform built for dynamic work

Quickbase: The first application platform built for dynamic work

By connecting everything through a single source of truth, the Quickbase platform helps businesses mitigate risk, reduce waste, and cut down on unexpected costs. With automated workflows and granular permissions, the right people will have access to the right information.