GTM Research - Chinese solar-panel prices rising 20% in the U.S.

The price of Chinese-made solar panels delivered to the U.S. could increase by up to 20% by the end of the year, GTM Research said Thursday. The increase is due to supply constraints, rising input costs, and the ongoing trade dispute between the two countries, the Boston-based green-energy consultancy said in a report.  Chinese-made modules are significantly cheaper than those made in other areas, and GTM Research estimated they were 55% of total modules shipped to the U.S. last year.  Chinese firms are quoting modules at 80 cents to 85 cents per watt for delivery in the second half of the year, compared to 70 cents per watt at the end of 2013, the report said.  The ongoing U.S.-China trade case is the "primary driver" behind the price increase, the report said.  More duties on Chinese and Taiwanese solar modules would push up U.S. pricing beyond current levels, as the firms would pass on tariff-induced penalties onto customers or contract out cell and module production to vendors based in higher-cost countries such as India, South Korea, and Malaysia, GTM Research said. 

Celebrating The 60th Anniversary Of The First Practical Solar Cell

Sixty years ago on April 25, 1954, Bell Laboratories demonstrated to the world one of the most significant breakthroughs ever recorded in the history of solar energy and of electricity – the first solar cell capable of converting enough sunlight into electricity to generate useful amounts of power. The press watched in awe as light poured on the first watt of silicon to run a 21 inch Ferris wheel. The next day the  New York Times  stated on its front page that the Bell invention marked “the beginning of a new era, eventually leading to the realization of one of mankind’s most cherished dreams – the harnessing of the almost limitless energy of the sun for the uses of civilization.” At the time of the Bell announcement, all the solar cells in the world delivered about one watt. Today, more than 100 billion watts of generating capacity of photovoltaics have been installed worldwide. This year not only marks the 60th anniversary of the solar cell, but also the beginning of reaching the Holy Grail that had previously been only a dream of solar scientists – entering the Era of Grid Parity, when solar panels generate power at costs equal to or less than electricity produced by fossil and nuclear fuels. With the phenomenal growth of solar technology in the last several years and its future looking even brighter, the time is ripe to celebrate the founding of a technology that led  Science  magazine almost forty years ago to declare, “If there is a dream solar technology, it is photovoltaics ­­­solar cells … a space­age electronic marvel at once the most sophisticated solar technology and the simplest, most environmentally benign source of electricity yet conceived."

Shale Gas Boom Leaves Wind Power Developers Seeking More Subsidy

The $14 billion industry, the world’s second-largest buyer of wind turbines, is reeling from a double blow -- cheap natural gas unleashed by the hydraulic fracturing revolution and the death last year of federal subsidies that made wind the most competitive of all renewable energy sources in the U.S.   Without restoration of subsidies, worth $23 per megawatt hour to turbine owners, the industry may not recover, and the U.S. may lose ground in its race to reduce dependence on the fossil fuels driving global warming, say wind-power advocates.   They place the subsidy argument in the context of fairness, pointing out that wind’s chief fossil-fuel rival, the gas industry, is aided by the ability to form master limited partnerships that allow pipeline operators to avoid paying income tax. This helps drive down the cost of natural gas.   “If gas prices weren’t so cheap, then wind might be able to compete on its own,” said South Dakota’s Republican Governor Dennis Daugaard.   Consider that gas averaged $8.90 a million British thermal units in 2008 and plunged to $3.73 last year, making the fuel a cheaper source of electricity for utilities. Congress allowed the wind Production Tax Credit to expire last year, and wind farm construction plunged 92 percent.  

Record-Breaking Demand For Global Solar PV Industry in Q1 2014, According to NPD Solarbuzz

New solar photovoltaic (PV) demand added during the first quarter of 2014 exceeded 9 gigawatts (GW), which was 35 percent more than the previous first-quarter record, set last year. In fact, every quarter in 2014 is forecast to reach new highs, with trailing 12-month demand at the end of Q1 2015 forecast to exceed 50 GW for the first time, according to findings in the latest NPD Solarbuzz Quarterly report.  The record level of demand achieved in the first quarter was driven by strong growth in Japan and the United Kingdom. These two countries combined accounted for more than one-third of global solar PV demand in Q1 2014 and set new quarterly records for PV deployed. 

How They Clean Those Gigantic Solar Energy Plants Clean?

The world's largest solar plants sure look amazing, but for those with inquisitive minds they raise one big question: how the hell do they keep all those panels clean? Nowadays, using robots like this!   This video shows the newly installed robotic cleaning system at Ketura Sun Solar Park. Until now, the panels covering the 20-acre site were only cleaned about nine times a year—a laborious task, performed infrequently due to expense—which in turn led to sub-optimal plant efficiency.   Now, though, a robotic army—designed and made by Israel-based Ecoppia—swarm over the panels to keep them clean. The 100 centrally controlled automatons set to work at nighttime, using microfiber pads and controlled air flows to push dirt from the surface of the solar panels. The robots move up and down their own aluminum frames to avoid loading the panels, and during the day they sit at the bottom and charge using electricity generated by the plant. So, now you know. 

One-Third of Texas Was Running on Wind Power This Week

On Wednesday, March 27th, the largest state in the contiguous United States got almost one-third of its electricity by harnessing the wind. According to the Electric Reliability Council of Texas, which manages the bulk of the Lone Star State's power grid, a record-breaking 10,296 MW of electricity was whipped up by wind turbines. That's enough to provide 29 percent of the state's power, and to keep the lights on in over 5 million homes.   ERCOT notes in a statement issued today that "The new record beats the previous record set earlier this month by more than 600 MW, and the American Wind Energy Association reports it was a record for any US power system."

Clean Edge Finds Global Solar Deployment Exceeds Wind for First Time

The global clean-energy picture for 2013 was a classic good news-bad news story, according to the Clean Energy Trends 2014 report issued today by clean-tech research and advisory firm Clean Edge, Inc. The industry saw dazzling growth, success, and rising stock prices in some sectors – most notably solar photovoltaic (PV) deployment – but downward trends and policy and finance hurdles in others.  Last year also marked a significant transition in the history of clean energy: for the first time since Clean Edge began tracking global markets in 2000, the world installed more new solar PV generating capacity, 36.5 gigawatts, than wind power (35.5 GW). Record levels of new solar deployment in China, Japan, and the U.S. combined with a down year in the wind industry to create this unprecedented crossover.  The global solar market's continued double-digit growth of 15 percent, plus a modest uptick in biofuels' market size, was not enough to overcome the wind industry's lackluster performance. As a result, combined global revenue for solar PV, wind power, and biofuels held nearly steady at $247.6 billion, down just slightly from $248.7 billion in 2012.  The full Clean Energy Trends 2014 report can be downloaded for free at www.cleanedge.com.

Much Energy Above the Treetops

Inland sites can offer sufficient wind yield for wind-farm operation. Initial results obtained from a TÜV SÜD test wind mast show that wind yield depends on the specific location.

Sustainability for the PV Industry: Field Service

By examining the differences in cost of service and downtime between three types of PV systems, we have demonstrated that the lowest TCO, and thus lowest LCOE, can be achieved by utilizing a field-serviceable string inverter.

Solar Power and the Future Energy Mix

In the near future, as solar becomes even more efficient and cost effective, it will play a larger role in industry and energy production. Plants that primarily burn natural gas for fuel, for example, will increasingly use solar to supplement the process to increase the efficiency of power generation.

The Key To Residential Solar Power Is Now Marketing

The potential for solar power is now enormous. The economics are attractive; the appeal is proven; the code has been cracked. With proper marketing, the future of solar power is very bright indeed.

From Selenium to Silicon and Beyond

The 60th Anniversary of the First Practical Solar Cell

Technology Increasing Wind Industry Competitiveness

The benefits of a centralized database and platform for managing data extend beyond the scope of one software product.

Unbiased, Comprehensive Solar Module Rating System

Although we have over 12, 000 PV modules in the database today, we are always searching for new modules. Manufacturers and consumers can contact us if they have modules that are not listed.

Solar Power is Growing at a Rate Faster than Silicon Valley

Already in the lead as the fastest-growing clean and renewable energy source in America, solar power is growing to account for 29% of new American electricity, trailing just behind natural gas at 46%.

Records 1831 to 1845 of 3869

First | Previous | Next | Last

Solar Power - Featured Product

Canadian Solar - HiKuBlack - Black Backsheet & Frame (Mono)

Canadian Solar - HiKuBlack - Black Backsheet & Frame (Mono)

Aesthetic appearance for residential systems: With black backsheet & black frame, Power range 380 ~ 405 W, Low power loss in cell connection. Enhanced reliability: · Low temperature coefficient (Pmax): -0.34 % / °C, LID LeTID less than 2.0%, Lower hot spot temperature, Better shading tolerance.