A solar cell that stores its own power: World's first 'solar battery' runs on light and air

Is it a solar cell? Or a rechargeable battery? Actually, the patent-pending device invented at The Ohio State University is both: the world's first solar battery.   In the October 3, 2014 issue of the journal Nature Communications, the researchers report that they've succeeded in combining a battery and a solar cell into one hybrid device.   Key to the innovation is a mesh solar panel, which allows air to enter the battery, and a special process for transferring electrons between the solar panel and the battery electrode. Inside the device, light and oxygen enable different parts of the chemical reactions that charge the battery.   The university will license the solar battery to industry, where Yiying Wu, professor of chemistry and biochemistry at Ohio State, says it will help tame the costs of renewable energy.   "The state of the art is to use a solar panel to capture the light, and then use a cheap battery to store the energy," Wu said. "We've integrated both functions into one device. Any time you can do that, you reduce cost."   He and his students believe that their device brings down costs by 25 percent.    

Solar Energy Storage System For Homes and Businesses Unveiled

An 8.6 kWh lithium-ion solar energy storage system for residential and commercial use has been launched by JuiceBox Energy. It is designed to work with grid-tied or off-grid solar systems. It features a system controller so the battery can be used as back-up power to a grid, thus enabling peak shifting and demand charge reduction. Notice these capabilities go beyond mere storage. In other words, battery technology can be smart and interactive in addition to storing electricity. The system has a battery based inverter, and management system for charging and discharging. Diagnostics are part of the design, too, to monitor the system for potential faults. JuiceBox will be available in the fourth quarter of 2014, with greater volume production beginning in 2015.   “Energy storage is the critical technology that allows unrestrained solar growth enabling a clean energy future and a more resilient grid,” explained Neil Maguire, CEO of JuiceBox. JuiceBox is taking advance orders, but it isn’t clear yet what the price is.  

Clean Energy Won!

During the first Obama Administration, Mr. Silver led both the federal government's $50 billion clean energy investment fund and its $20 billion fund focused on electric vehicles.

PV with batteries: a threat to CSP?

Looking to 10 years from now, if energy storage achieves its full potential then the whole landscape for power generation and distribution could change drastically.

Safer Fuel Cell Powered Automobiles

While an electric vehicle may go 200 or 250 miles without a charge a combination of fuel cell and fuel together with a balance of system could travel 500 or even 800 miles depending upon the specific requirements and design.

Powering Towards Renewable Energy

Corrective measures reinvigorate India's renewable energy sector

Is Biomass Heating Really Carbon Friendly?

For people who use coal or oil for heating, switching to biomass will certainly reduce carbon emissions as long as there is a program in place for sustainable management of the resource.

Look, Ma… No Wires!

There are an estimated 43 million street lights in the USA and at least 55 million parking lot and parkway lights. Since they combine to use about 10% of all the electricity consumed in the USA, taking them to LED is a step in the right direction but going all the way to zero energy use is even better.

Solar Plant in Cernay Powers Up With DuPont Photovoltaic Solutions

System optimized for maximum power output and lifetime with DuPont™ Tedlar® polyvinyl fluoride filmbased backsheets and DuPont™ Solamet® photovoltaic metallization pastes

Powerful approaches to energy conservation

Innovative Ontario companies find energy savings in places they'd least expect

Perovskite Offers Shot at Cheaper Solar Energy

A class of compounds first uncovered in the Ural Mountains more than a century ago is now a rock star in the world of solar-energy research.   Meet perovskite, the building block for materials that, as a group, have posted unprecedented gains in their solar-energy efficiency—the percentage of sunlight converted into electricity. In the lab, scientists experimenting with perovskite-based materials of different compositions have recently achieved a jump in efficiency to 20%, from around 10% just two years ago.   That is still lower than the most efficient silicon-based cells on the market— SunPower Corp. makes cells that are 24% efficient.   But because of perovskite's rapid increases in efficiency, researchers think it could be used to make cells that are at least as efficient as those fashioned from silicon, but at a much lower cost.

SCE Unveils Largest Battery Energy Storage Project in North America

For Southern California Edison (SCE), building a smarter grid started many years ago with smart meters and upgrades in distribution equipment. Today, the company takes another leap forward with the opening of the largest battery energy storage project in North America — the Tehachapi Energy Storage Project — to modernize the grid to integrate more clean energy.  The demonstration project is funded by SCE and federal stimulus money awarded by the Department of Energy as part of the American Recovery and Reinvestment Act of 2009.  The 32 megawatt-hours battery energy storage system features lithium-ion batteries housed inside a 6,300 square-foot facility at SCE's Monolith substation in Tehachapi, Calif. The project is strategically located in the Tehachapi Wind Resource Area that is projected to generate up to 4,500 MW of wind energy by 2016.  "This installation will allow us to take a serious look at the technological capabilities of energy storage on the electric grid," said Dr. Imre Gyuk, energy storage program manager in the energy department's Office of Electricity Delivery and Energy Reliability. "It will also help us to gain a better understanding of the value and benefit of battery energy storage."  The project costs about $50 million with matching funds from SCE and the energy department. Over a two-year period, the project will demonstrate the performance of the lithium-ion batteries in actual system conditions and the capability to automate the operations of the battery energy storage system and integrate its use into the utility grid. 

US, California Release Roadmap for Solar Projects

State and federal officials sought Tuesday to bring order to California's boom for renewable-energy plants in the Mojave and other southern California deserts, releasing a roadmap covering 22.5 million acres that designates some areas for large-scale solar, wind and geothermal plants and others for conservation of desert habitat and animals.   "We have amazingly special places here," U.S. Interior Secretary Sally Jewell said in a news conference at a desert wind farm near Palm Springs with U.S. Sen. Barbara Boxer and other officials releasing the multi-agency draft plan.   By taking a look at the desert as a whole, Jewell said, the plan's designers are ensuring "the areas that should be protected are set aside. The areas that should be developed are streamlined" for building utility-scale renewable energy plants.   The release of the plan follows a renewable-energy building boom in southeastern California's deserts during the first term of the Obama administration, when the federal government gave billions of dollars in loans to developers placing sprawling, utility-scale solar projects in virgin desert.   The plan released Tuesday recommends designating a total of 2 million acres as appropriate sites for future solar, wind and geothermal projects. Another 4.9 million acres under the U.S. Bureau of Land Management would be among the areas set aside as conservation areas, if the draft plan is adopted.

Obama pushes energy efficiency, rural solar power

The Obama administration unveiled a slew of actions Thursday aimed at improving energy efficiency and increasing the use of solar power in homes and businesses, including $68 million in spending. The White House said the actions would reduce carbon dioxide emissions by nearly 300 million metric tons by 2030, the equivalent of 60 million cars’ emissions in a year. They will also save $10 billion in energy costs. The actions, together with commitments from states, communities, companies and others, are part of President Obama’s second-term push to reduce carbon emissions in an effort to mitigate climate change.   They follow other recent efforts to help the solar power industry, including a series of announcements in April to spur solar deployment, a White House-hosted summit on solar power and a May decision to install solar power panels on the White House.   The Department of Agriculture will spend $68 million on 540 renewable energy and energy-efficiency projects in rural areas, 240 of which are for solar power. Agriculture Secretary Tom Vilsack will announce the program, the White House said.  

Wind energy may help with grid stabilization

A new study from the National Renewable Energy Laboratory suggests that wind energy could stabilize the energy grid of the eastern U.S. Grid stabilization is often an issue where renewable energy is concerned. At times, clean energy systems can generate more electrical power than an energy grid can handle. Frequency regulation plays a major role in grid stabilization in the U.S., and wind turbines may be a new solution to the stabilization problem. Frequency regulation is the process through which the operators of an energy grid police the frequency of the infrastructure’s alternating current. Energy grids are strictly controlled throughout the U.S. and  are mean to put out electric currents with frequencies of 60 Hertz. In order to maintain this frequency, grid operators regularly change how much electricity is being funneled into the grid. Destabilization occurs when frequency is not properly regulated.   Wind turbines could be a new solution to this problem. According to the study from the National Renewable Energy Laboratory, wind turbines could be controlled to affect grid stabilization. The study shows that wind turbines can be tweaked using simple, commercially available mechanical parts. By changing the way these turbines generate electrical power, grid operators may be able to effectively control how much energy is coming into the grid.

Records 616 to 630 of 2839

First | Previous | Next | Last

Featured Product

Lufft WS510-UMB Smart Weather Sensor

Lufft WS510-UMB Smart Weather Sensor

First and only Smart Weather Sensor with integrated Kipp & Zonen CMP10 Pyranometer (secondary standard). From the WS product family of professional intelligent measurement transducers with digital interface for environmental applications. Integrated design with ventilated radiation protection for measuring: Air temperature, relative humidity, air pressure, wind direction, wind speed and radiation. One external temperature or rain sensor is connectable.