Obama pushes energy efficiency, rural solar power

The Obama administration unveiled a slew of actions Thursday aimed at improving energy efficiency and increasing the use of solar power in homes and businesses, including $68 million in spending. The White House said the actions would reduce carbon dioxide emissions by nearly 300 million metric tons by 2030, the equivalent of 60 million cars’ emissions in a year. They will also save $10 billion in energy costs. The actions, together with commitments from states, communities, companies and others, are part of President Obama’s second-term push to reduce carbon emissions in an effort to mitigate climate change.   They follow other recent efforts to help the solar power industry, including a series of announcements in April to spur solar deployment, a White House-hosted summit on solar power and a May decision to install solar power panels on the White House.   The Department of Agriculture will spend $68 million on 540 renewable energy and energy-efficiency projects in rural areas, 240 of which are for solar power. Agriculture Secretary Tom Vilsack will announce the program, the White House said.  

Wind energy may help with grid stabilization

A new study from the National Renewable Energy Laboratory suggests that wind energy could stabilize the energy grid of the eastern U.S. Grid stabilization is often an issue where renewable energy is concerned. At times, clean energy systems can generate more electrical power than an energy grid can handle. Frequency regulation plays a major role in grid stabilization in the U.S., and wind turbines may be a new solution to the stabilization problem. Frequency regulation is the process through which the operators of an energy grid police the frequency of the infrastructure’s alternating current. Energy grids are strictly controlled throughout the U.S. and  are mean to put out electric currents with frequencies of 60 Hertz. In order to maintain this frequency, grid operators regularly change how much electricity is being funneled into the grid. Destabilization occurs when frequency is not properly regulated.   Wind turbines could be a new solution to this problem. According to the study from the National Renewable Energy Laboratory, wind turbines could be controlled to affect grid stabilization. The study shows that wind turbines can be tweaked using simple, commercially available mechanical parts. By changing the way these turbines generate electrical power, grid operators may be able to effectively control how much energy is coming into the grid.

North American Windpower reports U.S. offshore wind is "embryonic no more"

North American Windpower reports that the U.S. offshore wind industry is embryonic no more. Recent offshore wind news highlights also show that installations worldwide are picking up speed.   As of the end of July, the developer behind the 468 MW Cape Wind project had secured close to two-thirds of the roughly $2.5 billion needed for the wind farm, to be located off the coast of Cape Cod, Mass. In addition, the developer sold more than 77 percent of the projected output (363 MW) through stable, 15-year power purchase agreements (PPAs) at $0.187/kWh plus inflation. Construction is planned to commence in 2015.   Deepwater Wind (Providence, R.I.) has secured the entire output for the more modest 30 MW Block Island wind farm, located off the Rhode Island coast, with a 15-year PPA at $0.244/kWh. It also has preliminary contracts for turbines from Alstom and an installation vessel from Fred Olsen Windcarrier, and has received the go-ahead from the U.S. Army Corps of Engineers, the last federal agency to grant its approval. Deepwater says the Block Island wind farm has now been completely reviewed and approved by nine state and federal agencies, and expects “steel in the water” by 2015 with service to begin in 2016.   Cont'd...

Rethinking Solar Farms for the 21st Century: Tapping Ocean Space

An example is in a brave venture in India where a 10 kW prototype floating solar generation facility is being developed for placement in a pond. Pilot projects of this nature have also started to take shape in countries like Japan, France and Australia.

Wind Energy in Oklahoma

Oklahoma's pro-business climate and excellent wind resource have helped to attract wind developers from across the country and the globe.

Geothermal resources used to produce renewable electricity in western states

Geothermal plants are virtually emissions free, and unlike renewable sources such as wind and solar, they provide an available, dispatchable source of baseload power that is able to operate at a relatively high capacity factor.

Green growth: an operational tool (and GDP has had its day…)

Natural capital, made up of several elements that nature provides us with as the sustenance and basis of our society (soil, raw materials, water, clean air, …) has an economic value: today any growth model that ignores this by now shared knowledge can no longer work.

Solar Powered Generators & Energy Efficiency, Go Hand In Hand

Energy Efficiency is all about optimal and responsible power use and this is also exactly how one gets the most energy out of their solar generator.

Upcoming Tradeshow, Conference & Exhibition Summary
October, November, December 2014

This year Solar Power International has moved to October. SPI is perhaps the most important show for the solar industry here in North America. Stay tuned for the AltEnergyMag SPI 2014 special newspage devoted to news specifically from the show.

Why The Debate Over Energy Storage Utterly Misses The Point

The quest for "The Holy Grail of Energy Storage" is doomed to fail.

Strange bedfellows: Solar power meets oil drilling

A company that uses solar energy to recover crude has scored big financing from some major oil players—and highlights a growing niche of global oil exploration.   GlassPoint Solar last week landed a $53 million investment from Royal Dutch Shell and the sovereign investment fund of Oman for its enhanced oil recovery (EOR) technology. In a twist of irony, GlassPont's technology runs on solar power, which produces steam to help pump more fossil fuel from conventional crude plays.   GlassPoint has been using this technique in Oman since 2012, and it helped the firm score more than double its initial funding. Given the age of its oil fields, Oman relies on EOR—a complex process that extracts more oil than traditional drilling—to boost production.   Although EOR is common to the oil industry, using the power of the sun "is expanding very rapidly, and is a very new technology" said Rod MacGregor, GlassPoint's CEO, in an interview. "This application looks like the next step for solar."

World's Largest Single Rooftop Solar Power Project Commissioned In India

Indian solar energy companies are fast delivering world-class solar power projects as the market expands based on favorable regulatory and policy outlooks.   India’s largest engineering, procurement and construction (EPC) company in the solar power market has just commissioned the world’s largest single rooftop solar photovoltaic power project. The 7.52 MW solar power plant has been commissioned in the northern state of Punjab.   Larsen and Toubro has been involved in the construction of several solar power projects that will be seen as major milestones in India’s solar power infrastructure expansion. The company reported that it has already commissioned or is working on solar power projects with total capacity of 400 MW. This includes the largest solar thermal power plant in Asia – Reliance Power’s 125 MW linear Fresnel power project located in Rajasthan. The company has also worked on several other solar power projects under the National Solar Mission.   Punjab has some of highest power tariffs in the country. Being an agricultural state, power supply to the farmers is of paramount importance, while industries and commercial users are low on the priority list. In the absence of adequate supply, the utility procures power from short-term markets, which increases the overall costs which, in turn, is passed on the industrial and commercial consumers.

UC makes largest solar-energy purchase by U.S. higher education institution

The University of California announced Monday that it signed two power-purchase agreements that, combined, will provide 206,000 megawatt hours of solar energy per year — the largest solar energy purchase by any higher education institution in the U.S.   This energy is equivalent to powering 30,000 homes and will avoid producing more than 88,000 metric tons of carbon dioxide per year. The initiative will provide power for UC Irvine, UC San Diego and UC San Francisco, along with their medical centers, in addition to UC Merced and UC Santa Cruz.   Mark Byron, the university’s wholesale electricity program manager, described the purchase as a “nexus” with UC President Janet Napolitano’s sustainability initiative, which was released November. One of the main components of the initiative is to be carbon neutral by 2025.   “By injecting solar energy, we’re making sure our portfolio comes from green energy,” Byron explained.   The university signed the 25-year agreements with Frontier Renewables, a San Mateo-based company focused on solar energy technology. Two solar fields will be built in Fresno County as part of the project.

Sharp Considering Sale Of U.S. Solar Energy Unit

Sharp Corp is looking to sell its U.S.-based solar energy development unit Recurrent Energy, Bloomberg reported on Monday, as the Japanese firm winds down its involvement in the solar industry to focus on profitable businesses. Sharp paid $305 million in cash in 2010 to acquire Recurrent Energy. Selling the company now would help Sharp to raise capital as it struggles to raise its equity ratio to a healthy level. This year, Sharp shut down its UK solar plant and also pulled out of a venture with Italian energy firm Enel SpA  to make solar panels and generate solar power.

Flexible solar cell woven into fabric

Wearable electronics are quickly becoming the fashion. And there could soon be a way to power those electronics indefinitely, now that scientists in China have developed a solar cell 'textile' that could be woven into clothes. The textile retains a power-generation efficiency close to 1% even after been bent more than 200 times, and can be illuminated from both sides.   Scientists have been looking into flexible solar cells for decades, partly for coating irregularly shaped objects but also for integrating into wearable fabrics. One popular line of investigation has been dye-sensitized solar cells, in which a pigment absorbs sunlight to generate electrons and their positive counterparts, holes, before passing on those charges to inexpensive semiconductors. These solar cells are cheap and flexible, but the liquid nature of their pigments means that they must be well sealed. Bend a dye-sensitized solar cell more than a few times and the seals are likely to break, destroying its light-harvesting properties.   That is why Huisheng Peng at Fudan University in Shanghai and colleagues have been exploring another option: polymer solar cells. Although their maximum efficiencies fall below 10% - about half that of crystalline silicon, the most prevalent solar cell - polymer solar cells are lightweight, flexible and easy to manufacture. Peng and colleagues' solar cell textile consists of microscopic interwoven metal wires coated with an active polymer (to absorb the sunlight), titanium dioxide nanotubes (to conduct the electrons) and another active polymer (to conduct the holes). The researches coated each side of the textile with transparent, conductive sheets of carbon nanotubes, which complete the circuit.

Records 706 to 720 of 2916

First | Previous | Next | Last

Featured Product

sonnenBatterie eco

sonnenBatterie eco

Sonnen's mission is to provide clean and affordable energy for all. As the first mainstream grid tied residential energy storage company in the world and with 24,000 sonnenBatterie systems installed worldwide, sonnen is a proven global leader in intelligent energy management solutions. The all-in-one sonnenBatterie smart energy storage solution easily integrates with new and existing solar installations to help homes manage their energy throughout the day-saving money, providing backup power, and maximizing the effective use of solar power day and night. Sonnen has won several awards for its energy innovations, including the 2017 Zayed Future Energy Prize, MIT's Technology Review's 50 Smartest Companies in 2016, Global Cleantech 100 for 2015-2017, Greentech Media's 2016 Grid Edge Award for Innovation, and Cleantech's 2015 Company of the Year Award in both Israel and Europe.