Portable Solar Generators 101

It is important to pay attention to product specifications regarding the rate at which energy is coming in, the amount of energy stored, and the rate at which that energy is being consumed.

Case Study: Lyndon B. Johnson Public Housing Complex in Cambridge

Adopting a building-integrated solar air heating system for a multi-residential, high rise exterior retrofit of the Lyndon B. Johnson public housing complex in Cambridge, Massachusetts.

MITEI releases report on the future of solar energy

From Melissa Abraham | MIT Energy Initiative :  Report highlights enormous potential and discusses pathways toward affordable solar energy. Solar energy holds the best potential for meeting humanity’s future long-term energy needs while cutting greenhouse gas emissions — but to realize this potential will require increased emphasis on developing lower-cost technologies and more effective deployment policy, says a comprehensive new study, titled “ The Future of Solar Energy ,” released today by the MIT Energy Initiative (MITEI). “Our objective has been to assess solar energy’s current and potential competitive position and to identify changes in U.S. government policies that could more efficiently and effectively support its massive deployment over the long term, which we view as necessary,” says MITEI Director Robert Armstrong, the Chevron Professor in Chemical Engineering at MIT.

DIY Solar Trackers

The system incorporates panels and micro-inverters and steel and bearings and a microcontroller with an LCD display, to control the daily motion of the array. And, I might add, a light sensor to sense night time and daytime, and an AC current sensor to measure the amps produced (by the array) and amps consumed by the controller.

Solar Jobs Rivalry - MD vs. VA

Renewable Energy Corporation, a Baltimore solar panel installer, created the graphic below to show how Maryland and Virginia measure up against each other.

Engineering a better solar cell: UW research pinpoints defects in popular perovskites

One of the fastest-growing areas of solar energy research is with materials called perovskites. These promising light harvesters could revolutionize the solar and electronics industries because they show potential to convert sunlight into electricity more efficiently and less expensively than today’s silicon-based semiconductors.   These superefficient crystal structures have taken the scientific community by storm in the past few years because they can be processed very inexpensively and can be used in applications ranging from solar cells to light-emitting diodes (LEDs) found in phones and computer monitors.   A new study published online April 30 in the journal Science by University of Washington and University of Oxford researchers demonstrates that perovskite materials, generally believed to be uniform in composition, actually contain flaws that can be engineered to improve solar devices even further.   Cont'd...

Kyocera TCL Solar Inaugurates Floating Mega Solar Power Plants in Hyogo Prefecture, Japan

1.7MW and 1.2MW installations will provide equivalent power for roughly 920 average households.

Interview with Neil Fromer, Executive Director, Caltech Resnick Sustainability Institute

We have researchers here developing systems that should be able to convert more than 40% of the incoming sunlight to electricity (current panels are ~20% efficient). We are also working with research groups that can generate fuels and chemicals directly form sunlight, or from biomass, hopefully at an efficiency and cost that will replace conventional fossil fuel materials.

First Offshore Wind Farm In The U.S. Kicks Off Construction

Offshore wind is coming to the United States. Construction on what will be the country’s first offshore wind farm started Monday in Rhode Island. The wind farm, which is being developed by Deepwater Wind, will be located off of the coast of Block Island, a small island about 13 miles south of Rhode Island. Once completed, the five-turbine, 30-megawatt wind farm will produce enough energy to power all homes and businesses on Block Island, which previously relied on diesel generators, according to the Sierra Club. The wind farm will also send energy to mainland Rhode Island. It’s expected to come online in fall 2016. Environmental groups, many of which have pushed for the project since it started going through hearings in 2013, applauded the start of construction. Bruce Nilles, senior campaign director for the Sierra Club’s Beyond Coal Campaign, told ThinkProgress that the start of construction was a “landmark” moment for the U.S. wind industry, and that it “really makes real the promise offshore wind has” in the U.S., particularly on the East Coast. “This is technology that will play a very important part in decarbonizing electric sector,” he said.

A Guide to Safely Installing Solar Panel Arrays to Any Property Type

As the world continues to shift towards alternative energy sources, solar power will only continue to grow. Technologies will come and go and the astute product providers will continue to innovate.

'Mega' floating solar power plants open in Japan

Two floating solar power plants capable of providing electricity for 1,000 homes have been completed in Japan.   The latest such "mega-plants" at Nishihira and Higashihira Ponds in Kato City are the work of electronics giant Kyocera Corporation and Century Tokyo Leasing Corporation, and took just seven months to install. The plant's 11,250 modules are expected to generate 3,300 megawatt hours (MWh) every year.   According to Kyocera, besides being typhoon-proof (due to their sturdy, high-density polyethylene and array design) floating solar plants are superior to their land-based equivalents because of the cooling effect of the water, which allows them to function more efficiently. Reservoirs are also an ideal location because the panels produce shade, which reduces water evaporation and promotes algae growth. A report by Korea Water Resources Corporation found that the lower temperatures of the floating modules mean they are 11 percent more efficient than land-based equivalents. The report identified unsolved issues with the plants, too, however. It said the study had to discard data collected when the panels moved in the wind, and said research into new mooring systems was "continually needed".

MIT invention uses solar power to make ocean water drinkable

USAID recently announced the winners of the Desal Prize, part of a competition to see who could create an affordable desalination solution for developing countries. The idea was to create a system that could remove salt from water and meet three criteria: it had to be cost-effective, environmentally sustainable, and energy efficient. The winners of the $125,000 first prize were a group from MIT and Jain Irrigation Systems. The group came up with a method that uses solar panels to charge a bank of batteries. The batteries then power a system that removes salt from the water through electrodialysis. On the most basic level, that means that dissolved salt particles, which have a slight electric charge, are drawn out of the water when a small electrical current is applied. In addition to getting rid of salt (which makes water unusable for crops and for drinking), the team also applied UV light to disinfect some of the water as it passed through the system. Using the sun instead of fossil fuels to power a desalination plant isn't a totally new idea. Larger solar desalination plants are being seriously investigated in areas where water is becoming a scarce resource, including Chile and California. While proponents hope to eventually could provide water to large numbers of people, the technology is still expensive (though prices are dropping) and requires a lot of intricate technology.

ALTER EOLIA - Stackable Mini Wind Turbines

They can be installed on building roofs or stack at variable heights without a mast and without foundation. They are 100% removable, 100% silent, 100% recyclable and maintenance free.

Here's Why Apple Is Building Solar Farms in China

Apple just agreed to back two large solar farms in China. It’s the biggest deal of its kind for a U.S. company operating in China. For China, the deal is only a beginning.  China has been installing more renewable-power capacity than fossil fuels for several years, a gap that's growing. In 2015, China will install 15 gigawatts to 18 gw of solar power alone, double the solar deployment in the U.S., according to an analysis by Bloomberg New Energy Finance (BNEF). The chart shows how, in the next 15 years, China is on track to have more low-carbon electricity than the entire capacity of the U.S. power grid. "Think of what their grid will look like in 2030," Michael Liebreich, founder of BNEF, said at the organization's annual summit last week in New York. "A very competitive advantage." For Apple, the 40-megawatt partnership extends Chief Executive Officer Tim Cook's solar aspirations beyond U.S. borders. Cook announced an $850 million deal in February to purchase enough solar to power all its California operations: stores, offices, headquarters, and a data center. By making a similar push in China, the tech giant begins to offset its considerable manufacturing pollution, which is almost entirely overseas.  Many U.S. tech giants—not just Apple—have been criticized for outsourcing their pollution, says Justin Wu, head of Asia research for BNEF. Apple is "hitting back at that whole line of arguments," he says. "This is the beginning of something. Manufacturing in China is going to get greened." 

Improving Solar Tracker Performance With SMARTracking™

This case study is based on a real project in South West France. Results have been validated by an independent third party.

Records 856 to 870 of 3124

First | Previous | Next | Last

Solar & Wind - Featured Product

MORNINGSTAR - TriStar MPPT 600V

MORNINGSTAR - TriStar MPPT 600V

Morningstar's TriStar MPPT 600V charge controller leverages Morningstar's innovative TrakStar™ MPPT technology and our 20+ years of power electronics engineering excellence, to enable the widest input operating voltage range available from a solar array, wind turbine or hydro input. This controller's standard and DB versions are for off-grid applications, and the TR versions were developed to enable retrofitting grid-tied systems with battery backup.