24M Introduces the Semisolid Lithium-Ion Battery

Today, 24M emerged from stealth mode to introduce the semisolid lithium-ion cell, a revolutionary technology that solves the grand challenge of energy storage by enabling a new, cost-effective class of the lithium-ion battery. 24M’s semisolid lithium-ion is the most significant advancement in lithium-ion technology in more than two decades and combines an overhaul in battery cell design with a series of manufacturing innovations that, when fully implemented, will slash today’s lithium-ion costs by 50% and improve the performance of lithium-ion batteries. The technology will accelerate the global adoption of affordable energy storage. Until now, the energy storage field has had two options to try to drive down costs – build massive and complex factories to produce lithium-ion batteries in high volumes or pursue entirely new chemistries that may never move from the lab to the commercial floor. With the invention of the semisolid lithium-ion battery, 24M presents a third option – work with the world’s preferred energy storage chemistry and unlock new opportunities for cost reductions through new cell design and manufacturing innovations. 24M’s platform is the most significant advancement in lithium-ion technology since its debut more than 20 years ago.

Nissan to incorporate used Leaf batteries in home energy storage system

Following in the footsteps of Tesla and Mercedes-Benz, Nissan is now set to become the latest automaker to offer battery packs for stationary energy storage. Although pricing information has yet to be provided, the Nissan product should be relatively affordable, as it will incorporate used batteries from Nissan Leaf electric cars. Nissan designed the battery packs as part of the 4R Energy joint venture with Sumitomo Corp., and has partnered with commercial energy storage company Green Charge Networks to manufacture them. While Nissan is the source of the actual "second life" lithium-ion batteries that no longer meet the demands of automotive use, Green Charge is providing the power management software. According to Nissan, this is the first time that used EV batteries have been commercially utilized for such an application. "A lithium-ion battery from a Nissan Leaf still holds a great deal of value as energy storage, even after it is removed from the vehicle, so Nissan expects to be able to reuse a majority of Leaf battery packs in non-automotive applications," says Brad Smith, director of Nissan's 4R Energy business in the US.   Cont'd..

Designer Carbons Are Getting a Boost from Nanotechnology

By Richard Martin for The MIT Technology Review:  A group of Stanford researchers have come up with a nanoscale “designer carbon” material that can be adjusted to make energy storage devices, solar panels, and potentially carbon capture systems more powerful and efficient. The designer carbon that has reached the market in recent years shares the Swiss-cheese-like structure of activated carbon, enhancing its ability to catalyze certain chemical reactions and store electrical charges; but it’s “designed” in the sense that the chemical composition of the material, and the size of the pores, can be manipulated to fit specific uses. The designer carbon tested at Stanford is “both versatile and controllable,” according to Zhenan Bao, a professor of chemical engineering and the senior author of the study, which appeared in the latest issue of the journal ACS Central Science. “Producing high-surface-area carbons with controlled chemical composition and morphology is really challenging,” says Bao. Other methods currently available, she says, “are either quite expensive or they don’t offer control over the chemical structure and morphology.”   Cont'd...

Mercedes-Benz To Follow Tesla With Its Own Home Batteries

Stephen Edelstein for Motor Authority:  Tesla Motors may be the first automaker to try selling standalone battery packs for powering homes and businesses, but it may not be the only one for long. Mercedes-Benz could soon enter the energy storage business as well. A division of parent company Daimler has been testing battery packs that can power houses or store excess electricity from the grid, and plans to launch commercially in September, according to Australia's Motoring. Called ACCUmotive, this division was created in 2009 to develop lithium-ion batteries. Like Tesla before its recent announcement, the Daimler arm has been testing energy storage systems under the radar for some time. It recently built an energy storage array operated by German electricity joint venture Coulomb. The array consists of 96 lithium-ion modules that together boast a combined 500 kilowatt hours of storage capacity, which is used to stabilize the Saxony Kamenz power grid. There are plans to expand it to 3,000 kWh of capacity. ACCUmotive has reportedly delivered more than 60,000 lithium-ion cells to customers—which may include Mercedes itself—and employs more than 250 people. 

Five lessons on how to sell home energy storage

TRISTAN EDIS writes:  Reposit Power are one of the first companies in Australia that have teamed up with Tesla in the roll-out of their Powerwall home energy storage system. The interesting thing about Reposit is that its primary businesses isn’t selling energy hardware but, rather, using software to aggregate and trade lots of little sources of power generation into the electricity market. Most battery retailers and installers in Australia have their roots in the off-grid market – they have sold batteries to customers because their only other option was expensive, maintenance-intensive diesel generators. But Reposit is inherently bound to the grid where there are lots of generators connected which they trade against. It means Reposit, in trying to get batteries rolled out (which they can then use to trade into the power market), face a far more challenging sales proposition. Grid-connected customers don’t really need the battery system – it’s an optional extra because the grid works extremely well in providing reliable and affordable power. Yet participants in the solar PV market know there is some considerable latent demand for batteries among householders – particularly those with solar systems – provided the offering is right. The challenge is working out what the successful marketing formula needs to be to tap this latent demand. Dean Spaccavento, chief product officer with Reposit, explained what they’ve found out so far, outlining 10 lessons of which I’ve plucked out five. The overall message is it is extremely hard to sell a grid-connected household an energy storage system. And Reposit had the benefit of an ARENA grant which allowed them to discount the price of their $25,000, 14kWh battery system by a very hefty $10,000. This was a one-off, small volume offer. To sell battery systems in Australia it will need to happen without the benefit of such a big rebate. The five lessons below provide one overarching lesson – batteries won’t be sold on some kind of pure sophisticated financial calculus of rate of return or NPV. Instead, it will be a mixture of rule-of-thumb financial hurdles and a strong dose of emotion.   Cont'd....

Smart Energy Storage Software

Software plays a critical role in the performance of grid-scale energy storage systems because these energy storage systems are complex to design, deploy and operate.

"Designer carbon" boosts battery performance

Mark Shwartz, Stanford Univ.:  Stanford Univ. scientists have created a new carbon material that significantly boosts the performance of energy-storage technologies. Their results are featured in ACS Central Science. "We have developed a 'designer carbon' that is both versatile and controllable," said Zhenan Bao, the senior author of the study and a professor of chemical engineering at Stanford. "Our study shows that this material has exceptional energy-storage capacity, enabling unprecedented performance in lithium-sulfur batteries and supercapacitors." According to Bao, the new designer carbon represents a dramatic improvement over conventional activated carbon, an inexpensive material widely used in products ranging from water filters and air deodorizers to energy-storage devices. "A lot of cheap activated carbon is made from coconut shells," Bao said. "To activate the carbon, manufacturers burn the coconut at high temperatures and then chemically treat it." The activation process creates nanosized holes, or pores, that increase the surface area of the carbon, allowing it to catalyze more chemical reactions and store more electrical charges.

The Road to Change: Electric Vehicles Power the Future for Everyone

The EV industry is on the precipice of a significant growth spurt. AltEnergyMag.com talks with Principal Solar about this and the their now available White Paper "The Road To Change: Electric Vehicles Power the Future for Everyone".

The Thermal Energy Storage Techniques & Projects - Potential To Store Energy For At Least 7 Hours

Thermal energy storage (TES) is a load management technology with a significant potential to shift load from peak to off-peak demand hours.

Used cigarette butts offer energy storage solution

Scientists in South Korea have developed a new way to store energy that also offers a solution to a growing environmental problem.   Reporting their findings in the IOP Publishing journal Nanotechnology, the research team successfully converted used cigarette butts into a high performing material that could be integrated into computers, handheld devices, electric vehicles and wind turbines to store energy. According to the study, this material outperforms commercially available carbon, graphene and carbon nanotubes. It may someday be used to coat the electrodes of supercapacitors: electrochemical components that can store extremely large amounts of electrical energy. "Our study has shown that used cigarette filters can be transformed into a high performing carbon-based material using a simple one step process, which simultaneously offers a green solution for meeting the energy demands of society," says co-author Professor Jongheop Yi of Seoul National University.

What Can be Learned from the Northeast's Use of Microgrids

State leaders in the Northeast should keep watch of neighboring states to share best practices and innovative solutions for microgrids. Stakeholders can also look nationwide to other states including California and Illinois, where officials are creating incentives and addressing regulatory challenges.

Fuel Cells Energize a University

How an ultra-clean, highly efficient fuel cell power plant helps a state university boost energy security, achieve ambitious sustainability goals and save more than $100,000 in energy costs annually.

Improving Grid Resiliency through Fuel Cells

Distributed generation technologies, like fuel cells, have demonstrated a track record of providing practical solutions to issues facing the grid, and no other technology can offer both the resiliency and efficiency of fuel cells, while still achieving significant emission reductions.

Tesla's New Powerwall Packs a Powerful Punch

Ryan Wallace for The Science Times:  Known as the "Powerwall", Tesla's newest invention is a thin, wall-mounted battery that is the size of a flat screen TV. And with this new battery home owners who have already invested in solar power will be able to entirely go off the grid, and even to sell their excess solar juice back to energy companies. Developed in conjunction with the lithium-ion batteries that Tesla uses for its electric vehicles, the Powerwall unit is an inexpensive unit, only running $3,000 to $3,500, and with it Musk and his companies believe that humans may one day be able to transition to solely using energy derived from the Sun. Though the installation may look like an artpiece, it packs quite a punch at 10 kWh, and with it consumers will not only be able to store their energy for dark solar-free nights, but also more efficiently contribute to global energy use by contributing carbon-free energy back into the mix.  

Elon Musk's big announcement: it's called 'Tesla Energy'

Late Thursday night in Los Angeles, Tesla announced "Tesla Energy," described by the company in a statement as "a suite of batteries for homes, businesses, and utilities fostering a clean energy ecosystem and helping wean the world off fossil fuels."   The statement continued: "Tesla is not just an automotive company, it’s an energy innovation company. Tesla Energy is a critical step in this mission to enable zero emission power generation."   Tesla CEO Elon Musk made the official announcement onstage at the company's design studio in Hawthorne, CA, just south of LA.   The home battery, call the "Powerwall," is intended to store solar energy and enable customers to bank grid electricity from non-peak periods and use it during peak times, saving money. It looks "like a beautiful piece of sculpture," Musk said. You can order it now, and it comes in different colors.   "The Tesla Powerwall is a rechargeable lithium-ion battery designed to store energy at a residential level for load shifting, backup power and self-consumption of solar power generation," Tesla said.   "The Powerwall consists of Tesla’s lithium-ion battery pack, liquid thermal control system and software that receives dispatch commands from a solar inverter. The unit mounts seamlessly on a wall and is integrated with the local grid to harness excess power and give customers the flexibility to draw energy from their own reserve."

Records 871 to 885 of 950

First | Previous | Next | Last

Energy Storage - Featured Product

U.S. BATTERY RENEWABLE ENERGY SERIES DEEP CYCLE BATTERIES

U.S. BATTERY RENEWABLE ENERGY SERIES DEEP CYCLE BATTERIES

Our RE Series batteries are designed to provide the highest peak capacity, longest cycle life, and greatest reliability for use in industrial or residential renewable energy applications. Renewable Energy Series batteries utilize the company's exclusive XC2™ formulation and Diamond Plate Technology® to create the industry's most efficient battery plates, delivering greater watt-hours per liter and watt-hours per kilogram than any other flooded lead-acid battery in the market. Our Deep Cycle batteries are engineered to work with solar panels as well as other renewable energy applications.