New metal hydride clusters provide insights into hydrogen storage

Researchers at the RIKEN Advanced Science Institute (ASI) has shed light on a class of heterometallic molecular structures whose features point the way to breakthroughs in the development of lightweight fuel cell technology.

The most abundant element in the universe, hydrogen holds great promise as a source of clean, renewable energy, producing nothing but water as a byproduct and thus avoiding the environmental dangers associated with existing mainstream energy sources. Broad adoption of hydrogen, however, has stalled because in its natural gaseous state, the element simply takes up too much space to store and transport efficiently.


One way to solve this problem is to use metal hydrides, metallic compounds that incorporate hydrogen atoms, as a storage medium for hydrogen. In this technique, the metal hydrides bind to hydrogen to produce a solid one thousand times or more smaller than the original hydrogen gas. The hydrogen can then later be released from the solid by heating it to a given temperature.

The new heterometallic hydride clusters synthesized by the RIKEN researchers use rare-earth and d-transition metals as building blocks and exploit the advantages of both. Rare earth metal hydrides remove one major obstacle by enabling analysis using X-ray diffraction, a technique which is infeasible for most other metal hydrides – offering unique insights into underlying reaction processes involved. Rare earth metal hydrides on their own, however, do not undergo reversible hydrogen addition and release, the cornerstone of hydrogen storage. This becomes possible through the addition of a d-transition metal, in this case tungsten (W) or molybdenum (Mo).

While rare-earth / d-transition metal-type metallic hydride complexes have been studied in the past, the current research is the first to explore complexes with multiple rare earth atoms of the form Ln4MHn and with well-defined structures (Ln = a rare-earth metal such as yttrium, M = a d-transition metal, either tungsten or molybdenum, and H = hydrogen). In a paper in Nature Chemistry, the researchers show that these complexes exhibit unique reactivity properties, pointing the way to new hydrogen storage techniques and promising environmentally-friendly solutions to today's pressing energy needs.

For more information, please contact:

Zhaomin Hou
Organometallic Chemistry Laboratory
RIKEN Advanced Science Institute
Tel: +81-(0)48-467-9393 / Fax: +81-(0)48-462-4665

Takanori Shima
Organometallic Chemistry Laboratory
RIKEN Advanced Science Institute
Tel: +81-(0)48-467-9392 / Fax: +81-(0)48-462-4665

Global Relations Office
RIKEN
Tel:+81-(0)48-462-1225 / Fax: +81-(0)48-463-3687
Email: koho@riken.jp
Reach us on Twitter: @rikenresearch

Reference

Takanori Shima, Yi Luo, Timothy Stewart, Robert Bau, Garry J. McIntyre, Sax A. Mason and Zhaomin Hou. "Molecular heterometallic hydride clusters composed of rare-earth and d-transition metals." Nature Chemistry, 2011, DOI: 10.1038/NCHEM.1147

Featured Product

Parker Wind Power Solutions - Core technologies to help you harness the wind… onshore and offshore

Parker Wind Power Solutions - Core technologies to help you harness the wind… onshore and offshore

Visit Booth #2886 at AWEA Windpower, May 22-25 in Anaheim, CA to see how Parker products, systems and services help you raise performance while reducing risk in wind energy environments. Parker has been on the forefront of windpower for over two decades, with solutions that touch virtually every critical function in the turbine. From integrated lube oil filtration systems and sealing technologies that make drive trains more reliable and bearings operate like new to compact blade pitch actuation systems that maximize rotor efficiency and minimize vibrations in the turbine. Parker has the solutions that make today's advanced and sophisticated wind power plants better and smarter. Case in point? Our high efficiency power conversion systems that deliver optimum power to the grid. While our scalable evaporative cooling system lowers overall system cost with up to 40% higher power throughput.