Fresh Breeze for Wind Power in China

Chinese wind-power stocks, once given up for dead in the investor doldrums, have roared back to life in recent weeks on expectations of government support for the renewable energy sector and overseas demand.

Investors are betting on future Chinese government policy directives and subsidies that boost profits for manufacturers of wind power turbines, gearboxes, blades, towers and transmission equipment.

They're also betting that multinational wind energy companies such as Vestas,  Siemens,General Electric and Senvion will step up orders for the Chinese-made equipment and parts that are used to build offshore and onshore wind energy farms worldwide.

Contractors building big wind farms, particularly those off the European coast, often buy lower-rung products such as steel towers from China. And tower fabricators such as China's Titan Wind (002531:Shenzhen) are making good money on that demand.

Shenzhen-listed Titan, which is only nine years old and listed in 2010, has seen its stock value climb 55% since the beginning of the year. The company has gotten major contracts from Vestas and GE. And it's currently planning to build a factory in India to complement existing plants in China and Denmark.

Pilots complain that glare from the world's biggest solar power plant is blinding them

Airplane pilots reported that they were blinded by the intense sunlight reflecting off some of the 340,000 mirrors at the Ivanpah Solar Electric Generating System on the California-Nevada border. Yet six months elapsed before their reports reached the regulator that oversees the plant, which is located near the Las Vegas airport.

The mirrors, called heliostats, focus the sun on 459-foot-high (140 meter) towers that contain water-filled boilers. The concentrated sunlight boils the water to create steam, driving turbines that generate 377 megawatts of carbon-free electricity. The heat is so blistering that it has melted the feathers of birds in mid-flight.
 

Planes fly far too high to be affected by the heat—but by not the light. “From the pilot’s seat of my aircraft the brightness was like looking into the sun,” reported one pilot as his small plane climbed from 6,000 to 12,000 feet after taking off from the Boulder City, Nevada, airport. In a report he filed with the Aviation Safety Reporting System (ASRS), the pilot wrote that, “In my opinion the reflection from these mirrors was a hazard to flight because for a brief time I could not scan the sky in that direction to look for other aircraft.”

A Peek Into The Astonishing Future Of Wind Power

“What if you could scoop the air? Scoop it and move it downward, amplifying its kinetic energy along the way, concentrate it to a single point of intensity, the way a magnifying glass concentrates sunlight to a single incendiary point?”

Dr. Daryoush Allaei, an engineer and founder of Sheerwind, an innovative wind power company, is concentrating his unique thought process on harnessing wind energy in new ways.

“And assuming you could do this technically, could you do it on a large enough scale to make it economically feasible?” Allaei writes in his company description. “More to the point, could you generate energy so inexpensively that it stages a renaissance?”

Sheerwind is pushing the boundaries of wind power innovation with its bladeless wind turbine, called INVELOX. The turbines funnel wind into ground-level generators through a tapering passageway that squeezes and accelerates the air. The units are about half as tall as traditional wind towers, which rise up to 260 feet into the air, and the ground-based turbine blades are more than 80 percent smaller than conventional wind turbine blades, which are about 115-feet long. The device resembles a giant gramophone that sucks in wind instead of blurting out sound.  Cont'd..

How crowdfunding solar power is democratizing the way we finance clean energy

Less than 24 hours after Oakland-based Mosaic allowed crowdfunding campaigns in January 2013 in which investors could pitch as little as $25, they raised enough money to fund four clean energy projects in California for affordable housing projects. More than 400 investors raised $313,000. The investors, on average, paid about $670 each.

Last week, Mosaic launched a new platform on their site, allowing people to finance solar arrays on homes, in addition to the commercial projects already being funded. Since its initial launch in 2010, company has raised more than $7 million in investments through crowdfunding with a 100 percent payback rate. In its seed rounds, Mosaic raised $3.4 million from venture capitalists. In 2012, Mosaic received a $2 million grant from the Department of Energy.

The biggest project to date is installing solar panels on 1,500 military homes in Fort Dix, New Jersey. Another successful project included installing a solar roof on Pinnacle Charter School in Denver, Colorado, which doubled as clean energy education for the students.  Full Article.

California ISO Breaks New Solar Production Record

Solar power production hit a new record of 4,093 megawatts on Saturday, March 8, 2014. The previous record was 3,926 megawatts (MW) set the previous day on March 7. Electricity generated from solar has more than doubled from June 7, 2013 when the ISO recorded 2,071 MW of peak production — and output has more than quadrupled from the summer of 2012. The new record generation can instantaneously power about 3 million homes. 

Meanwhile, when combining ISO wind resources of 5,890 MW* and solar resources of 5,231 MW, the two resources now account for 11,121 MW interconnected to the ISO grid. In total, all renewables (including geothermal) make up about 15,000 MW of the ISO generation mix. The current wind production record stands at 4,302 MW set June 23, 2013. 

"This shows that California is making remarkable progress in not only getting new resources approved and connected to the grid, but making meaningful contributions in keeping the lights on as well," says Steve Berberich, ISO President and Chief Executive Officer. "The milestones illustrate that we are well into a new era when clean, renewable energy is shouldering its share of our electricity needs — and that is exciting." 

GE Introduces Smart, Powerful 2.75-120 Wind Turbine

At the European Wind Energy Association's annual conference, GE) announced its 2.75-120 wind turbine, a smarter, more powerful turbine. Part of GE's brilliant wind platform, the 2.75-120 provides 5 percent more annual energy production than GE's 2.5-120 model and is available with various tower technologies, ranging between 85-139 meters, and optional energy storage.

"As we accelerate our platform's growth in Europe, we will continue to invest in technology such as the 2.75-120's flexible tower and other energy storage options, making GE's wind turbines more customizable for developers and operators," said Cliff Harris, general manager of GE's renewable energy business in Europe.

The 2.75-120 is available on a steel, hybrid or space frame tower, helping to tailor the turbine for unique site conditions and bring wind power to new places across the continent. The range of tower height spans 85-139 meters tall.

Short-term or long-term energy storage is available with the 2.75-120, making wind power more predictable, flexible and fast responding through battery software applications. Short-term storage is integrated at the turbine level and long-term storage is centralized for the wind farm. These options further customize GE's offering based on-site or operator needs.

New Report: U.S. Solar Market Grows 41%, Has Record Year in 2013

Continuing its explosive growth, the U.S. solar industry had a record-shattering year in 2013. According to GTM Research and the Solar Energy Industries Association's (SEIA) Solar Market Insight Year in Review 2013, photovoltaic (PV) installations continued to proliferate, increasing 41percent over 2012 to reach 4,751 megawatts (MW). In addition, 410 MW of concentrating solar power (CSP) came online. Solar was the second-largest source of new electricity generating capacity in the U.S., exceeded only by natural gas. Additionally, the cost to install solar fell throughout the year, ending the year 15 percent below the mark set at the end of 2012. 

At the end of 2013 there were more than 440,000 operating solar electric systems in the U.S. totaling over 12,000 MW of PV and 918 MW of CSP. 

The U.S. installed 2,106 megawatts in the fourth quarter alone, 44 percent of the annual total. This makes Q4 2013 by far the largest quarter in the history of the U.S. market, exceeding the next largest quarter by 60 percent. Cont'd

Follow The Money: Who Is Funding Energy Storage And Why

To understand how the energy storage in the United States – particularly California — is heating up, just follow the money.
 
Green Charge Networks, a Silicon Valley storage installer, announced Tuesday that it has lined up a $10 million fund from TIP Capital to finance projects. Green Charge installs lithium-ion batteries for businesses, who could forgo owning the storage equipment and pay for energy storage as a service via a long-term contract instead.
 
“Energy storage is what a lot of clean energy financing companies are working toward,” said Vic Shao, CEO of Green Charge Networks, which was founded in 2009. “Everybody realizes that this is what’s coming and they need to get on board.”
 
This leasing model has succeeded in expanding rooftop solar panel installations at homes and businesses, which could use solar electricity without paying tens of thousands of dollars upfront to own the equipment. Installers often market solar electricity as being cheaper than the electricity from utilities, though that saving usually isn’t guaranteed for the duration of the contract.
 
Storage installers tend to pitch their services to businesses and government agencies that want to reduce the so-called “demand charge.” A utility collects the fee to help pay for its readiness to generate and send power to meet its customers need, especially when demand is high. Cont'd

Trina Solar and ANU Jointly Develop High Efficiency Solar Cell

Trina Solar  a global leader in photovoltaic modules, solutions and services, announced today that researchers from Trina Solar and the Australian National University have jointly developed a new high-efficiency solar cell.
 
The laboratory scale Interdigitated Back Contact cell was developed at the Australian National University Centre for Sustainable Energy Systems under a research and development contract with Trina Solar through a collaboration contract with the Solar Energy Research Institute of Singapore. After two years of research, funded by Trina Solar, the ANU has developed, with contribution from Australian consulting firm PV Lighthouse, an IBC silicon solar cell, which was independently tested by the Fraunhofer CalLab in Germany to be able to deliver an efficiency of 24.4%, putting it among the most efficient solar cells to date.
 
Trina Solar is now developing a commercial version of the IBC solar cell as well as an IBC PV module. The commercial cell has already reached an efficiency greater than 22% for a 125mm by 125mm IBC solar cell, and 238W for an IBC PV module (based on 72 cells), which was independently tested by the National Center of Supervision and Inspection on Solar Photovoltaic Products Quality of China. Though it is currently in laboratory scale, the new solar cell will soon be ready for industrialized mass production.

Tesla to raise $1.6 billion for 'Gigafactory'

Tesla's grand expansion plans will be funded in part by raising $1.6 billion through a bond issue that the automaker announced Wednesday.
 
The money will be used to build what its founder Elon Musk has dubbed the "Gigafactory" and for production of a more affordable, new mass market vehicle.
 
The massive factory is expected to produce more lithium ion batteries annually by 2020 than were produced worldwide in 2013. Those batteries, and the reduction in their cost, are vital to Tesla's ability to produce a cheaper car in numbers that could catapult the company into the ranks of the major automakers.
The electric car maker's current model, the Tesla S, has a starting price of $69,000 and can go more than 200 miles between charges.
 
The new factory, expected to cost $4 billion to $5 billion, could be located in either Arizona, Nevada, New Mexico or Texas, the company said Wednesday. It could take up between 500 and 1,000 acres, employ about 6,500 people, and produce batteries needed for about 500,000 cars per year, Tesla said. Tesla recently increased its sales forecast for 2014, saying it expects global sales to reach 35,000 vehicles.
 
Construction expected to start later this year and production at the plant due to begin in early 2017.
 

SMA acquires Danfoss' solar inverter business

Germany-based SMA Solar is to acquire Danfoss’ solar inverter business.

Danfoss will acquire 20% of SMA’s shares with a value of €302 million (US$415 million) in return for selling its inverter unit.

It will receive SMA shares at a price of €43.57 50% premium on the average price during (US$59.86) the past 60 days.

The alliance between SMA and Danfoss brings together respectively the world's largest and seventh largest inverter manufacturers by market share, according to an IHS study published in May.

“The strategic alliance with Danfoss strengthens SMA’s leading position in the global photovoltaic market. We are faced with a highly competitive market environment and increased price pressure,” said Pierre-Pascal Urbon, chief executive of SMA.

“In this context, SMA will benefit from Danfoss’ years of experience in automated drives. This market has been characterised by fierce competition for a long time. Accordingly, the strategy of the Danfoss group targets continuous cost improvements through global sourcing and cost down initiatives. By establishing a close cooperation there is significant potential to improve the cost position in both companies,” added Urbon

The inverter market has been hit by the emergence of bigger utility projects that require larger but fewer inverters, and the rise of new players in the microinverter market that have stolen share in the residential sector.

Seattle Company Plans First Offshore Wind Farm on Pacific Coast

The nation’s first offshore wind farm on the Pacific Coast cleared a crucial federal hurdle after Seattle’s Principle Power received approval to move forward on a commercial lease for the proposed $200 million, 30-megawatt project.
 
Principle Power received the go-ahead this month from a Department of the Interior agency to lease 15 square miles of federal waters, 18 miles from Coos Bay, Ore. If the lease request gets final approval, the WindFloat Pacific project would anchor the first offshore turbines in federal waters on the West Coast. It also would be the first in the nation to use triangular floating platforms instead of single piles driven into the ocean floor.
 
At this stage of the complicated federal process, Principle’s plan is considered a demonstration project. DOI’s Bureau of Ocean Energy Management (BOEM) released a finding that there are “no competitive interests for the offshore area of Oregon” where the company has requested the commercial lease. That finding clears the way under BOEM’s non-competitive leasing process for Principle Power to submit an implementation plan for the project. WindFloat Pacific will demonstrate floating offshore wind technology; it is one of the Department of Energy’s (DOE) seven Offshore Wind Advanced Technology Demonstration Projects.

Tesla to reveal details of battery 'Gigafactory'

Tesla Motors' CEO Elon Musk says that this week, he will detail his plans to build a huge plant to make electric car batteries — so big that he calls it the "gigafactory."
 
Compared with Tesla's swoopy electric luxury cars, making lithium-ion battery packs sounds decidedly unsexy. But Tesla apparently views the plant as critical to its strategy. Reasons:
 
•Steady supply. Tesla will make the case that it needs its own source of battery packs. It has made no secret of its inability to get enough batteries through its deal with Panasonic to keep up with demand for its Model S electric sedan. It says the current shortage will last through the first half of the year.
 
•Other revenue streams. The plant could supply batteries to other carmakers and for other uses. Musk also is chairman of SolarCity, which has announced plans to sell Tesla battery packs to companies to use for emergency backup power storage.
 
•Future models. Tesla is developing a more mainstream electric car for sale in several years. But it will need to dramatically lower battery costs and increase supply to create a mass-market vehicle.

Stacking the deck

SUNLIGHT is free, but that is no reason to waste it. Yet even the best silicon solar cells—by far the most common sort—convert only a quarter of the light that falls on them. Silicon has the merit of being cheap: manufacturing improvements have brought its price to a point where it is snapping at the heels of fossil fuels. But many scientists would like to replace it with something fundamentally better.

John Rogers, of the University of Illinois, Urbana-Champaign, is one. The cells he has devised (and which are being made, packaged into panels and deployed in pilot projects by Semprius, a firm based in North Carolina) are indeed better. By themselves, he told this year’s meeting of the American Association for the Advancement of Science, they convert 42.5% of sunlight. Even when surrounded by the paraphernalia of a panel they manage 35%. Suitably tweaked, Dr Rogers reckons, their efficiency could rise to 50%. Their secret is that they are actually not one cell, but four, stacked one on top of another.

Solar cells are made of semiconductors, and every type of semiconductor has a property called a band gap that is different from that of other semiconductors. The band gap defines the longest wavelength of light a semiconductor can absorb (it is transparent to longer wavelengths). It also fixes the maximum amount of energy that can be captured from photons of shorter wavelength. The result is that long-wavelength photons are lost and short-wave ones incompletely utilised.  Cont'd

California's Record-Breaking New Solar Plant Is Already Irrelevant

Last week, dozens of people, including Google energy chief Rick Needham and Energy Secretary Ernest Moniz, trekked out to the California-Nevada border in the middle of the Death Valley to dedicate what is believed to be the world's largest solar thermal facility in the world.
 
At 392 megawatts, the Ivanpah solar thermal plant will be able to power 140,000 homes — the equivalent of all of Newark (averaging two people per household).
 
We covered the project when BrightSource, the main developer behind the project, first put up a stunning 3-D tour of the site.
 
But for all its scale and beauty, in terms of the future of renewables, Ivanpah is already irrelevant.  
 
Solar thermal creates electricity by using mirrors to direct intense amounts of heat at a centralized collector, which is used to heat a substance like water to create steam power. Solar photovoltaic, meanwhile, directly converts solar energy into electricity through semiconductors.
 
If solar thermal sounds unnecessarily complicated, you're right. Solar photovoltaic has seen explosive growth in the past few years thanks to plummeting material costs, state incentives, and eco-conscious homebuyers putting up panels on their roofs.  But solar thermal growth has stalled, and is expected to continue to do so.  Ivanpah cost $2.2 billion. Warren Buffett paid the same amount for the world's largest photovoltaic plant just up the road outside Bakersfield. That plant will generate 1.5-times as much power as Ivanpah. 
 
As the New York Times' Diane Cardwell and Matt Wald wrote Friday, Ivanpah probably represents an end, not a beginning. 

Records 301 to 315 of 1049

First | Previous | Next | Last

Solar & Wind - Featured Product

Quick Mount PV - E-Mount now available

Quick Mount PV - E-Mount now available

E-Mount features Quick Mount PV's patented QBlock Elevated Water Seal Technology to provide superior waterproofing and fast, single bolt installation on composition/asphalt shingle roofs. Similar to QMPV's best-selling Classic Composition Mount, E-Mount uses a smaller, lighter flashing and is priced to compete in highly competitive markets. All stainless steel hardware included. Made in the USA.