A Wind Farm in Deep Water off the U.S. Coast

Deepwater Wind, a company based in Providence, Rhode Island, has drawn up plans for what could be the largest wind farm in U.S. waters, the company announced last week. The proposed farm would generate a huge 1,000 megawatts of power and would be located 18 to 27 miles off the coast of Rhode Island and Massachusetts at a depth of 52 meters—considerably deeper than any other large scale wind project to date. By moving into deeper waters, turbines can harness stronger, more sustained winds. And the massive turbines the company plans to use—each capable of generating more than 5 megawatts of power, with blades rising 150 meters above the water's surface—will be nearly invisible from shore, thereby avoiding potential legal battles with coastal communities that perceive the turbines as eyesores. Four-legged steel platforms rising from the seafloor will allow Deepwater Wind to operate in depths more than twice those of conventional steel "monopole" wind turbine platforms. As water depth increases, the diameter of monopoles must increase exponentially, making them uneconomical in water deeper than about 20 meters. By using a four-legged design, company officials say they will be able to work in depths that were previously prohibitively expensive.

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

MORNINGSTAR - GenStar MPPT

MORNINGSTAR - GenStar MPPT

GenStar MPPT is the industry's first fully integrated solar DC charging system, an all-new design with "lithium DNA" from the leader in charge controllers. Out of the box, GenStar is an overachiever-delivering legendary Morningstar quality, efficiency, power and reliability along with the latest in advanced communications and control technologies. All the most installer-requested features are on-board; additional features can be easily added via Morningstar's ReadyBlock expansion technology, with snap-in blocks that provide battery metering and monitoring, signaling and load control, and lithium battery communications/control