Abengoa's Gigantic ‘Salt Battery' Stores Utility-Scale Solar Energy

The global solar company Abengoa Solar has just announced that its massive Solana solar power plant has begun commercial operation in Arizona. The plant represents a transformational breakthrough in utility scale solar power, because it includes an energy storage system based on molten salt. The storage feature enables the plant to keep generating electricity long after the sun goes down.

CSPs use mirrors to concentrate solar energy on a focal point, typically a large tower. According to Abengoa, at 280 megawatts the Solana plant is the world’s largest CSP plant to use parabolic trough mirrors to concentrate solar energy (typical CSP mirrors, called heliostats, are flat and quadrilateral).

It is also the first solar plant in the U.S. with thermal energy storage, in the form of a molten salt system. The storage capacity is about six hours. That enables the plant to keep generating electricity from solar energy well into the early evening hours, when demand in the region typically peaks out.

Solana officially went online yesterday after completing a series of tests that included charging the thermal energy storage system and demonstrating that it could produce electricity for six hours using only stored energy.

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

LG Solar Unveils NeON R with Enhanced Aesthetics and Energy Savings

LG Solar Unveils NeON R with Enhanced Aesthetics and Energy Savings

The NeON R module features "Back Contact" cell technology delivering an entirely black panel that is aesthetically pleasing and energy efficient. The cell's seamless, surface blends perfectly into nearly all rooftop designs while the module's electrodes are positioned on the rear of the cell. Using LG's N-type cell structure, the panels produce 365W of energy, up to 7.3kWp, compared to 5.8kWp of the p-type cell. The module's new design minimizes LID, thereby delivering a longer lifespan and increased energy output.