Sand could be the key to unlocking more efficient solar power, Masdar scientists find

Naser Al Wasmi for The National UAE: Masdar Institute scientists have published a breakthrough research into more efficient solar power – and they will not have to look far for the raw material ­needed.

Using sand, they hope to drive concentrated solar power technology to compete with the traditional photovoltaic method.

Named “Sandstock”, the research published at the Solar Power and Chemical Energy Systems Conference in South Africa yesterday, showed sand can withstand temperatures of up to 1,000°C.

Concentrated solar power, or CSP, uses mirrors to reflect heat from the sun to one point, most typically a tower filled with a material capable of storing heat and then converting it into electricity.

CSP’s benefit is that the energy derived is easy to store, but in recent years it has lost out to the more popular photovoltaics, which is more cost-efficient.

That may now change.

“Sand is really always a drawback in this country but in this project we wanted to use it as an advantage because it can withstand very high temperature, and of course it is very cheap here,” said Dr Nicolas Calvet, assistant professor of mechanical and materials engineering, and guide for the research project.  Cont'd...

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

LG Solar Unveils NeON R with Enhanced Aesthetics and Energy Savings

LG Solar Unveils NeON R with Enhanced Aesthetics and Energy Savings

The NeON R module features "Back Contact" cell technology delivering an entirely black panel that is aesthetically pleasing and energy efficient. The cell's seamless, surface blends perfectly into nearly all rooftop designs while the module's electrodes are positioned on the rear of the cell. Using LG's N-type cell structure, the panels produce 365W of energy, up to 7.3kWp, compared to 5.8kWp of the p-type cell. The module's new design minimizes LID, thereby delivering a longer lifespan and increased energy output.