Solar Power To Threaten Conventional Power By 2020

Leonard Hyman & William Tilles for OilPrice.com:  Researchers project that solar power will become cheaper than conventional, fossil fueled electric generating sources by 2020. (The researchers do not say that directly, but their numbers do.) But the news gets even worse for incumbent utilities. By 2030, solar-plus-storage could threaten the economic relevance of their distribution grids by making less necessary the connection with the local electric utility.

In short, more efficient solar panels combined with lower cost battery storage will threaten the economic viability of the entire electric utility distribution grid by 2030. Stated another way, those supposedly low risk, high yielding distribution utilities like Con Ed, for example, may at some point in the not-too-distant future become high risk and no yield equities if this thesis plays out.

If consumers can economically produce, store, and swap electrical energy, they will not need the power grid. They can replicate it with other technologies and at lower costs. That would strand utility assets on a grand scale as an increasing numbers of consumers cut the cord. If they do, electric utility industry revenue will decline sharply, with certain utilities service areas more vulnerable than others. We suspect the rating agencies will take note of this.  Full Article:

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

LG Solar Unveils NeON R with Enhanced Aesthetics and Energy Savings

LG Solar Unveils NeON R with Enhanced Aesthetics and Energy Savings

The NeON R module features "Back Contact" cell technology delivering an entirely black panel that is aesthetically pleasing and energy efficient. The cell's seamless, surface blends perfectly into nearly all rooftop designs while the module's electrodes are positioned on the rear of the cell. Using LG's N-type cell structure, the panels produce 365W of energy, up to 7.3kWp, compared to 5.8kWp of the p-type cell. The module's new design minimizes LID, thereby delivering a longer lifespan and increased energy output.