MIT turns to millennia-old tech for renewable energy storage

Barbara Eldredge for Curbed:  With renewable energy sources becoming more and more advanced, storing that energy means big business. While we’ve seen technological breakthroughs enabling everything from DIY powerpacks to batteries integrated into windmills, one team from the Massachusetts Institute of Technology (MIT) is looking to old-school innovations for next-generation energy storage techniques. How old school? Over three millennia.

Indeed, MIT researchers have reinvented firebricks, a Bronze-Age technology created by the Hittites—who occupied what is today Turkey, in the 17th century BC. Firebricks were designed by the Hittites to retain heat for long periods of time, if properly insulated.

Such a device would be immensely useful today, according to the MIT team, citing a high demand for industrial heat. The team’s Firebrick Resistance-heated Energy Storage (FIRES) system stores thermal energy (heat) in firebricks and later converts the energy back into electricity. Oh, and storing this energy costs 1/40th the price of putting it into batteries.

This solution could be a game-changer for the renewable energy industry, which has always suffered from the problem of over-producing on some days when the wind or sun are strong and under-producing on others.  Full Article:

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

Kipp & Zonen - DustIQ the novel soiling monitoring solution for solar panels

Kipp & Zonen - DustIQ the novel soiling monitoring solution for solar panels

Soiling of the panel glass is one of the major problems in the rapidly expanding solar energy market, with the attendant loss of efficiency and reduction in performance ratios. Now, there's a new, simple and very cost-effective alternative. Based on Kipp & Zonen's unique Optical Soiling Measurement (OSM) technology, DustIQ can be easily added to new or existing solar arrays and integrated into plant management systems. The unit is mounted to the frame of a PV panel and does not need sunlight to operate. It continuously measures the transmission loss through glass caused by soiling, so that the reduction in light reaching the solar cells can be calculated.