California ISO Breaks New Solar Production Record

Connected solar and wind renewables surpass 11,000 megawatts to help light up the Golden State

FOLSOM, Calif.--Solar power production hit a new record of 4,093 megawatts on Saturday, March 8, 2014. The previous record was 3,926 megawatts (MW) set the previous day on March 7. Electricity generated from solar has more than doubled from June 7, 2013 when the ISO recorded 2,071 MW of peak production and output has more than quadrupled from the summer of 2012. The new record generation can instantaneously power about 3 million homes.


Meanwhile, when combining ISO wind resources of 5,890 MW* and solar resources of 5,231 MW, the two resources now account for 11,121 MW interconnected to the ISO grid. In total, all renewables (including geothermal) make up about 15,000 MW of the ISO generation mix. The current wind production record stands at 4,302 MW set June 23, 2013.

"This shows that California is making remarkable progress in not only getting new resources approved and connected to the grid, but making meaningful contributions in keeping the lights on as well," says Steve Berberich, ISO President and Chief Executive Officer. "The milestones illustrate that we are well into a new era when clean, renewable energy is shouldering its share of our electricity needs and that is exciting."

California remains the largest producer of solar power in the nation.1 Meanwhile, only Texas surpasses California in wind resources installed, and California was among the top five states nationally for adding wind capacity.2

1. Solar Energy Industries Association

2. Ernst & Young LLP

*net dependable capacity

Featured Product

Dynapower - MAXIMIZE PRODUCTION AND REVENUES WITH SOLAR PLUS STORAGE

Dynapower - MAXIMIZE PRODUCTION AND REVENUES WITH SOLAR PLUS STORAGE

The addition of energy storage to an existing or new utility-scale PV installation allows system owners and operators the opportunity to capture additional revenues. Traditional storage plus solar applications have involved the coupling of independent storage and PV inverters at an AC bus or the use of multi-input hybrid inverters. An alternative approach - coupling energy storage to PV arrays with a DC-to-DC converter - can help maximize production and profits for existing and new utility-scale installations. DC-Coupled Utility-Scale Solar Plus Storage leads to higher round-trip efficiencies and lower cost of integration with existing PV arrays and at the same time, opens up new revenue streams not possible with traditional AC-coupled storage, including clipping recapture and low voltage harvesting, while being eligible for valuable tax incentives.