Small wind heading into boom period, report says

The small wind industry is about to enter a major growth spurt. It is poised to grow from a $255 million industry in 2010 to $634 million industry in 2015, according to a recent Pike Research report. The report attributes a growing interest and expected success in the coming years to the fact that small wind is currently more efficient and, therefore, cheaper on a cost-per-watt basis than solar photovoltaic cells. Because the return on investment can take as little as 5 years to 10 years, depending on area wind conditions, it offers an accessible option to small businesses, farms, and communities even in the absence of state or federal incentives, according to the report. But perhaps the most interesting statistic thrown out there by Pike Research is that it expects the average price of a small wind turbine system to reach $4,150 per kilowatt by 2015.

U.S. Dept of Energy - Solar Decathlon 2011

The U.S. Department of Energy Solar Decathlon challenges collegiate teams to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and attractive. The winner of the competition is the team that best blends affordability, consumer appeal, and design excellence with optimal energy production and maximum efficiency.  AltEnergyMag.com was on hand to check out this years entrants and has highlighted them in a 4 part series . Results: Overall Winner - The University of Maryland won top honors overall by designing, building, and operating the most cost effective, energy efficient and attractive solar powered house. Purdue University took second place followed by New Zealand ( Victoria University of Wellington) in third place. Peoples Choice - Appalachian State University. “The team’s passion and enthusiasm were contagious,” said Terri Jones, Solar Decathlon Communications Contest official. “The People’s Choice Award is a popular vote, and I believe the Solar Homestead house and team appealed to people on many levels.” Communications Contest - Middlebury College ,  T"his team’s holistic approach to communications was refreshing; they achieved in all aspects of communications—not just in one area,” said Ryan Park, director of business development for REC Solar Inc., who presented the award on behalf of the Communications Contest jurors. “This team made renewable energy technologies familiar to the public, which we believe will help people more easily embrace these technologies. And isn’t that what it’s all about?” Engineering Contest - New Zealand (Victoria University of Wellington) .  "The New Zealand house was beautifully executed, with extreme attention to detail and craftsmanship and an intuitive tree-ring visualization system, which makes it easy to understand energy use throughout the house,” said Engineering Contest juror Dr. Hunter Fanney. Architecture Contest - The University of Maryland .  “WaterShed achieves an elegant mix of inspiration, function, and simplicity. It takes our current greatest challenges in the built environment—energy and water—and transforms them into opportunities for spatial beauty and poetry while maintaining livability in every square inch,” said Architecture Contest Juror Michelle Kaufmann. Affordability Contest -   We have a tie between Parsons The New School for Design and Stevens Institute of Technology who built Empowerhouse for less than $230,000,   Team Belgium (Ghent University)  With its E-Cube  valued at $249,568.09. More Results to come...

Solar cell breakthrough could hit 40 percent efficiency

Researchers using novel materials to build photovoltaic cells say their efforts could nearly double the efficiency of silicon-based solar cells. The cells being developed by teams from the University of Arkansas and Arkansas State University have the potential to achieve a light-to-energy conversion rate, or solar efficiency, of 40 percent or better, according to the researchers. The photovoltaic cells are intended for use in satellites and space instruments. Currently, the silicon-based solar cells that NASA uses in its satellites and instruments have efficiencies of only up to 23 percent, according to NASA statistics. And today it was announced that the research teams are getting more money--a total of $1 million in new funding--to further their work. Of that, about $735,000 will come from NASA, $237,000 from the University of Arkansas, and $86,000 from Arkansas State. Omar Manasreh, professor of electrical engineering at the Optoelectronics Research Lab at the University of Arkansas, has been developing the technology so far with a $1.3 million grant from the U.S. Air Force Office of Scientific Research. He leads the research team along with Liangmin Zhang, assistant professor at Arkansas State.

New Report Shows U.S. Solar Outpaces Global Market: PV Demand Grows 69 Percent Year-Over-Year

The U.S. solar energy industry continued its rapid growth through the second quarter of this year, gaining a greater share of the total global market according to GTM Research and the Solar Energy Industries Association (SEIA)'s latest quarterly U.S. Solar Market Insight report. Leading the way was the U.S. solar photovoltaics (PV) market, which installed 314 megawatts in the second quarter, 69 percent more than the same period last year and 17 percent more than the first quarter of 2011. The U.S. remains poised to install 1,750 megawatts of PV in 2011, double last year's total and enough to power 350,000 homes. "The second quarter data illustrates that the U.S. solar industry continues to be one of the fastest growing in America," said Rhone Resch, president and CEO of SEIA. "More than 100,000 Americans are employed in solar, twice as many as in 2009. They work at more than 5,000 companies - the vast majority being small businesses - across all 50 states."  

First Solar, SunPower move ahead on solar farms

Amidst intense scrutiny of the Department of Energy's loan guarantee program via the Solyndra scandal, September has still emerged as critical for a series of solar companies that hope to close federal loan guarantees and start construction on solar farms by the end of the month. First Solar, for one, received the final permit for its 550 MW Topaz Solar project in San Luis Obispo County in California yesterday, said the county's senior planner, John McKenzie. With that construction permit, First Solar plans to start building Topaz by Sept. 30, said company spokesman Alan Bernheimer. Meeting that deadline will ensure the company remains eligible for a loan guarantee from the Department of Energy that will back part a $1.93 billion loan led by the Royal Bank of Scotland.

The latest cleantech VC: China

Will the Chinese government make a good cleantech VC? The government recently announced a plan to invest directly or through venture capital funds into startups that are developing technologies including clean power and green cars. The Ministry of Finance posted a policy statement last Friday outlining its criteria for pumping up emerging technology development in the country. The criteria spells out what types of startups will qualify (founded no more than five years ago, for example) and what kind of venture capital funds might attract government participating (each equity fund must have a minimum of 2.5 billion yuan, or $391 million). The government said, in general, it wants to contribute no more than 20 percent of a fund, and it doesn’t want to stay in a fund for more than 10 years.

SolarCity Lands Huge Military Housing Solar Roof Deal

SolarCity has made headlines for its unique business model. The company's focus is on residential and commercial solar roof installation, and has spread its influence across the U.S. with great success. SolarCity has now received a $344 million loan guarantee from the U.S. Department of Energy to outfit military housing rooftops with solar panels. The loan guarantee will see SolarCity partnering with military housing developers to install up to 160,000 solar rooftops, with an estimated 371 megawatts of generating capacity. That will effectively double the amount of installed solar rooftop power in the U.S., with 166,000 solar roof installations total reported in Q1 2011 by GTM Research. The project is being carried out in partnership with Bank of America Merrill Lynch, SolarCity, and USRG Renewable Finance—a subsidiary of U.S. Renewables Group—who will serve as the lead lender.

First Solar's $455.7 Million Loan Guarantee for Canada

First Solar Inc. is the world's largest maker of thin-film solar modules. The company is looking to power project investments in Canada and has secured a $455.7 million of loan guarantees from the U.S. Export-Import Bank. First Solar plans to build two solar plants in southern Ontario with a combined capacity of 90 megawatts. Ontario has seen a significant spike in solar energy investment following the passing of the Canadian province's recent Green Energy Act, catapulting it into the position of number two in installed solar capacity, trailing only California. The loan guarantee in the largest ever approved by the U.S. Export-Import Bank for solar products shipped abroad, and is aimed at helping President Obama in his goal of doubling U.S. exports by 2015.

Solyndra To File For Bankruptcy, Despite $535 Million DOE Guarantee

Solyndra, a California-based thin film solar company that received a $535 million loan guarantee from the US Department of Energy, has halted operations and plans to file for bankruptcy. Solyndra is the third US solar manufacturer to close its doors in less than a month, and like Evergreen Solar and SpectraWatt before it, Solyndra says it is unable to compete with larger rivals in Asia, as the price of solar panels continues to drop. President Obama visited Solyndra's DOE-supported facility in May 2010 to promote the agency's investments in renewable energy. The company's failure will undoubtedly fuel the fires of the administration's critics. For several months Republicans have been calling for an investigation into how Solyndra was chosen to receive a loan guarantee.

U.S. Solar Industry Was Net Global Exporter by $1.9B in 2010

A new report shows that the U.S. is central to the global solar supply chain. In 2010, U.S. solar firms achieved a positive trade flow of $1.9 billion globally according to SEIA® and GTM Research's U.S. Solar Energy Trade Assessment 2011. Photovoltaic (PV) components accounted for more than 99 percent of the year's exports, with solar heating and cooling (SHC) claiming the remainder of the positive balance. For the U.S. PV manufacturing industry, 2010 was a record year. Exports totaled more than $5.6 billion, with PV polysilicon feedstock and capital equipment leading all components at $2.5 billion and $1.4 billion respectively. The leading destinations for U.S.-sourced PV components were China and Germany. Meanwhile, U.S. imports of PV products totaled $3.7 billion, the majority of which ($2.4 billion) came from procurement of modules assembled overseas. China and Mexico were the top two sources of PV goods headed to the U.S. in 2010. Furthermore, the U.S. was a net exporter of solar products to China last year by more than $240 million. The U.S. primarily sold capital equipment and PV polysilicon to China, while China primarily sold PV modules to the U.S.  

US to Reach 12% Global Market Share by 2015

Despite a struggling domestic economy, the US solar photovoltaic (PV) market will double in 2011, according to the latest Solarbuzz® United States PV Market Report. 2011 growth rates vary significantly by market segment, an outcome of the vast movements in incentives and policies at the federal, state and local government level over the past 12 months. “With rapid declines in factory gate prices over the past eight weeks as manufacturers and distributors focus on depleting module inventories, demand has picked up across residential, corporate and government segments,” noted Craig Stevens, President of Solarbuzz. “This acceleration is being supplemented by explosive utility demand and the rush to install before federal cash grants are scheduled to expire at the end of the year.” The US is forecast to become the third-largest solar photovoltaic market, behind Germany and Italy in 2011. While the US currently comprises 5% of the world PV market, Solarbuzz projects an increase to 12% by 2015.  

7 ways the military is embracing cleantech

The U.S. government is growing into one of the most important cleantech customers. It’s been investing and proselytizing the value of clean power, biofuels and energy efficiency products and services for job creation, energy security and (insert your favorite cliché here). And it’s a natural extension that it also should set an example as a major consumer of these technologies. The U.S. Defense Department, which uses 80 percent of the energy consumed by the federal government, is increasing its efforts to fund and use cleantech. A lot of these efforts are centered on drafting purchase plans and testing technologies in the field and one thing to consider is that larger companies might have an easier time convincing the military to buy than startups.  Click here for a list of some of the military’s plans and projects .

Solar power plant switches to PV from thermal

Developers of the giant Blythe Solar Power Project in California have switched from solar thermal technology to photovoltaic solar panels, one of a string of similar changes at large-scale solar projects. Solar Millennium today said that the first 500-megawatt phase of the Blythe plant will use photovoltaic (PV) panels because the economics work better. The company earlier this year had received a conditional loan guarantee from the Department of Energy to develop a concentrating solar thermal plant, where heat from mirrored troughs makes steam which is passed through a turbine to generate electricity. But Germany-based Solar Millennium and its US subsidiary said it will use commercial financing and PV technology instead. Seven other utility-scale solar projects in the southwest U.S. have decided to scrap concentrating solar power (CSP) for PV. All told, that's about 2,515 megawatts of solar capacity that has converted, according to GTM Research analyst Brett Prior. The moves underscore how falling costs have improved the competitiveness of PV for large-scale projects. Solar PV prices have fallen by more than 50 percent over the last two years, making them more attractive to both the energy developer and institutions putting up the money to finance these projects.

Evergreen Solar Files Chapter 11

Evergreen Solar shares are down more than 60% Monday after the company filed a Chapter 11 bankruptcy in federal court in Delaware. The stock seems likely to expire worthless. In connection with the filing, the struggling solar company said it reached a deal with holders of more than 70% of its outstanding 13% convertible senior secured notes to start a restructuring process that will include the sales of the company’s String Ribbon silicon wafer technology business. A company created by the noteholders called ES Purchaser will serve as a stalking horse bidder for the company’s assets. Evergreen said day-to-day operations will go on, and that it will continue to pay suppliers and vendors. As part of the reorganization, the company will cut 65 jobs in the U.S. and Europe, including suspension of operations at its Midland, Michigan plant. Here’s the nut of the story for investors: Evergreen said that “based upon the estimated value of the company’s assets, the assets are expected to be insufficient to satisfy all its obligations to its creditors. Accordingly, it is expected that no distributions will be made to holders of common stock and the common stock will be extinguished upon consummation of the Chapter 11 plan.”

A hybrid solar panel to make hydrogen

The best use of the sun's energy is to make hydrogen, according to a Duke University researcher. Engineer Nico Hotz earlier this week detailed results from his research around a rooftop solar panel that generates hydrogen from the sun's heat. The hydrogen gas--which is made by breaking off hydrogen atoms from a water solution--can be stored and used to make electricity in a fuel cell.  In his experiment, Hotz determined that his system creates more usable energy than solar photovoltaic panels which convert sunlight directly into electricity. He calculated the cost could be lower, too. There have been research efforts--and a commercial product from a company called Nanoptek --to make hydrogen from sunlight. Hotz's system, though, uses a new technique that relies on methanol, also known as wood alcohol, and a nano-engineered catalyst. Under the glass of Hotz's solar collector are copper tubes, coated with aluminum and aluminum oxide, which carry water and methanol. Once the liquid is heated to a sufficient temperature, a catalyst is added to cause hydrogen atoms to break off. That hydrogen gas is then piped and pressured for storage in a tank, where it can be drawn on to make electricity in a fuel cell.

Records 1186 to 1200 of 1585

First | Previous | Next | Last

Solar Power - Featured Product

S-5!® PVKIT™ 2.0 Solar Rooftop Solutions

S-5!® PVKIT™ 2.0 Solar Rooftop Solutions

The concept of combining PV arrays with standing seam metal roofing is growing-for good reasons. Metal roofs have a life expectancy of more than 40 years. Shouldn't the mounting system last as long? With S-5! zero-penetration attachment technology and PVKIT 2.0, the solarized metal roof is the most sustainable system available -and without compromising roof warranties! PVKIT 2.0 is the also the best solution for attaching PV modules directly to any exposed fastener metal roof.