Hybrid (photovoltaic (electric) and thermal) Solar Panels

Our Combined Heat and Power (CHP) solar module provides up to 4 times more energy output (thermal and electric power) than any standard photovoltaic module.

Cleaning Carbon Dioxide from the Atmosphere

All though there could be huge advantages to directly extracting carbon dioxide from our atmosphere instead of from its source, there has been very little R&D funding to explore and make it a reality. By beginning the process of recycling CO2, America would be building the technology now for a sustainable hydrocarbon future.

The State of the U.S.Water Sector

Water management spurred by scarcity in the US is likely to produce new financing and business models, technological innovation and greater engagement of the public in proactively handling the world's most precious resource.

Ivanpah Project Is More Than 92 Percent Complete

To date, more than 153,990 of the project's total 173,500 heliostats have been installed. Several stunning photos below show recent progress at the site.

Empower America Enlists FIGTREE PACE to Help Service Veterans Transition from Combat Boots to Boots

Campaign Reminds Americans They Can Make EVERY Day Memorial Day by Hiring Solar-Trained Service Veterans Ready to Help Property Owners Slash Energy Costs and Drive American Energy Independence

Fracking and Solar: Friends, Foes or the Bridge to Clean Energy Adoption?

While treating gas as a 'bridge' to a low-carbon future, it is crucial not to allow the greater ease of the near-term task to erode efforts to prepare a landing at the other end of the bridge,

Cryogenic Energy Storage

In 2005, Highview Power Storage began researching the possibility of utility scale energy storage using liquid air. Excess energy (during low-demand times) is used to compress air into a liquid, which can then be stored in insulated low-pressure tanks. When demand exceeds production, the liquid air is warmed and the resulting steam is used to drive the turbine of a generator. According to Highview, cryogenic energy storage offers the following benefits: It uses proven technology that’s been been around for years. Regulations for cryogenic storage already exist. Storage is at low pressure, making tanks less costly. (Tanks are insulated to keep the liquid air cold, but they’re still less expensive than room-temperature compressed air storage tanks.) Air doesn’t explode and it’s non-toxic. Liquid air has four times the energy density of compressed air. During the storage process, ambient air is filtered to remove impurities. Water and CO2 are also removed because they’ll freeze solid. The resulting air is refrigerated. Some of the air condenses into a liquid at -196oC. That liquid air is stored in tanks. The remaining unliquified air is very cold, so it’s recycled and used to assist in the cooling process. During the recovery process, exhaust gas is added to heat the liquid air. When the liquid is gasified, it drives a steam engine that generates electricity. In the process of heating the liquid air, the exhaust gas is chilled to -160oC. The “cold” is stored in a gravel bed and later recovered to help the chilling process used during energy storage. This reduces the amount of work the compressor has to do, making the process more efficient. Read Tom Lombardo's Full Article.

Energy storage industry gets bipartisan support from Senate

The Electricity Storage Association (ESA) applauded today the reintroduction of energy storage legislation by U.S. Senators Ron Wyden (D-OR), Susan Collins (R-ME), Jeff Merkley (D-OR), and Angus King (I-ME) that would create an investment tax credit (ITC) for energy storage technologies of all types and help level the playing field for an industry that has enormous potential to increase the reliability, security, and efficiency of the nation’s electric grid. The Storage Technology for Renewable and Green Energy Act (STORAGE) Act was originally introduced in the 112th Congress in both chambers with bipartisan support. It closely mirrors the bill recently introduced in the House, H.R. 1465. “We are delighted that Sen. Ron Wyden, chairman of Senate Energy and Natural Resources and a longtime supporter of energy storage, and senators Collins, Merkley and King, all staunch supporters of clean energy technologies, understand the value of energy security and have taken such a strong interest in energy storage,” said Brad Roberts, Executive Director of the ESA. “Energy storage technologies help all resources – whether renewable or traditional – run more smoothly. Our applications are now operating on the grid and have proven to be of enormous benefit; this tax credit will help developers secure private sector equity and debt financing to truly scale this industry.”

This Printer Spits Out 10 Meters of Solar Panel Every Minute

The printer system was developed by VICOSC, the Victorian Organic Solar Cell Consortium—a collaboration between the University of Melbourne, CSIRO Molecular and Health Technologies, and Monash University—and utilizes only existing printer technology to embed polymer solar cells (also known as organic or plastic solar cells) in thin sheets of plastic or steel at a rate of ten meters per minute. "We're using the same techniques that you would use if you were screen printing an image on to a T-Shirt," project coordinator and University of Melbourne researcher Dr David Jones said in a press release. Organic solar cells rely on organic electronics, hydrocarbon molecules specifically, to generate a photovoltaic effect and convert the Sun's rays into usable DC current. The primary benefit to using organic cells is that these sheets can be printed in bulk for very little and the optical absorption coefficient of of the hydrocarbon molecules is so high that even small amounts of material can suck up a lot of light. On the other hand, organic cells are less efficient than their inorganic alternatives and tend to break down faster due to the chemical changes occurring within. Currently, these organic sheets are able to produce up to 80W in the lab and between 10 and 50W under real world conditions. These cells aren't meant to replace conventional, inorganic panels, quite the opposite in fact. "The different types of cells capture light from different parts of the solar spectrum. So rather than being competing technologies, they are actually very complementary," said CSIRO materials scientist Dr Scott Watkins. This printing technique could soon lead to buildings with PV laminated windows and exteriors and homes covered in solar shingles.

U.S. and Europe Prepare to Settle Chinese Solar Panel Cases

The Obama administration and the European Union have each decided to negotiate settlements with China in the world’s largest antidumping and antisubsidy trade cases involving China’s roughly $30 billion a year in solar panel shipments to the West, officials and trade advisers in Beijing, Brussels and Washington said. The plan that is starting to take shape would essentially carve up the global solar panel market into a series of regional markets. It would sharply raise the price of solar panels exported from China, the world’s dominant producer, by requiring Chinese companies to charge more while limiting the total number of solar panels they could ship. In exchange, Chinese companies would no longer be charged steep taxes on their exports of solar panels. The United States is already collecting tariffs totaling about 30 percent while the European Union is expected to impose similar tariffs of about 50 percent on June 5, and may backdate them to March 5.

A Down-To-Earth Wind Turbine

The wind is faster at higher altitudes and wind power is directly proportional to wind velocity cubed. But mounting a turbine up high makes it more expensive to install and maintain, and requires a stronger tower to support such a top-heavy structure. Engineers at SheerWind have a solution: “scoop” the air from up high and bring it down low to drive a ground-level turbine. Oh, and while they’re at it, how about amplifying the wind speed too? SheerWind coined the term INVELOX - INcreasing the VELOcity of wind - to describe its innovative design. Using a giant omni-directional funnel whose mouths are mounted at the top of a tower, INVELOX brings the wind down to ground level and sends it out through a narrow neck, which increases the wind speed, much like putting your thumb over the end of a garden hose and leaving a tiny opening will increase the water velocity. This makes the turbine smaller, decreasing its cost. And because the turbine is on the ground, routine maintenance doesn’t require climbing a tall tower. Funnel mouths facing all directions eliminates the need for the turbine to rotate towards the wind, resulting in fewer moving parts, less complexity, and increased reliability.   Since traditional turbines have relatively high start-up speeds (8 MPH or 3.6 m/s is typical), they can’t  generate electricity at lower speeds. Because the INVELOX design increases the speed of the wind before it reaches the turbine, it allows the system to generate power at wind speeds as low as 2 MPH (0.9 m/s).

Solar Power Windows Fast Approaching Commercial Production

Commercial production of solar windows, using the patented SolarWindow spray-on solar power coating system, may be just around the corner. A recent announcement from US building integrated photovoltaics (BIPV) developer New Energy Technologies Ltd. (which we’ve been following for years) has us feeling that the time may soon come. As per New Energy Technologies’ recent announcement, the big news is that the fabrication time of the technology has been greatly reduced. The fabrication process, which involves methodically spraying layers of extremely small solar cells onto glass, has been reduced from a couple of days to only a couple of hours. According to the company, the process has been cut to 1/6 of the previous fabrication time. And perhaps as significantly, New Energy has also reported that it has achieved “a two-fold increase in power conversion efficiency” and improved the transparency in the glass.

New Map Shows Solar Jobs Still Growing Faster Than the Economy

Thanks to The Solar Foundation (TSF), individuals can now learn more about the solar industry in their backyard, their neighboring states and across the country. On April 18, TSF introduced a new interactive map that showcases the nearly 120,000 jobs in America's booming solar industry in 2012. This is the first time that the public can easily access the data on a state-by-state basis, and explore what parts of the solar industry are biggest—including manufacturing, installing, sales, project development and associated jobs.

Wind Industry in the USA

The debate of the PTC just took too long and put the players to uncertainty. Installations were pushed in 2012 to record level of almost 13 GW. This year will be a big dip to estimated 4 GW or so and midterm the installations should level on 7 GW level.

Case Study: Thomonde Hospital In The Central Region of Haiti

The Thomonde battery bank was designed for 40 percent depth of discharge and only one day of autonomy due to the large loads of some of the medical equipment and the availability of the diesel generator.

Records 1081 to 1095 of 2874

First | Previous | Next | Last

Featured Product

Sun Xtender® Deep Cycle AGM Batteries

Sun Xtender® Deep Cycle AGM Batteries

Sun Xtender® Deep Cycle AGM Batteries for renewable energy storage are manufactured in the USA by Concorde Battery Corporation and are built to the same demanding standards crucial to supporting the aircraft industry. To facilitate maximum conductivity & charge acceptance Sun Xtender® batteries are constructed with copper alloy corrosion free terminals & robust intercell connections. Endurance and optimal float life are achieved through plates thicker than the industry standard. Sun Xtender® Batteries' AGM maintenance free design is an ideal solution for off grid and grid tied systems.