MPower To Build Australia's Largest Energy Storage System

ydney-based energy investment group Tag Pacific has today announced it has won a landmark deal to deliver Australia’s largest energy storage system to be operated alongside the University of Queensland-owned Gatton solar power plant in south-east Queensland. The battery storage project, valued at around $2 million, was won by Tag’s wholly owned power business MPower, which is also working with Rio Tinto and First Solar in the remote town of Weipa, Queensland, to build an ARENA-supported 1.7MW solar PV project, which will serve a remote bauxite mining operation and could be expanded to 6.7MW   The newly announced energy storage project, will be grid connected; a slightly different tack for MPower, which has tended to specialise in remote, and off-grid solar plus storage hybrid systems.  

Groundbreaking technology stores wind power in salt caverns

In the Lloydminster area, a Calgary company is ready to carve out large underground salt caverns to store excess wind energy — the first use of the technology in Canada.   Rocky Mountain Power president Jan van Egteren says the storage sites could be ready in five years.   Salt caverns have been used to store natural gas for years, but only two other projects in North America are using them for compressed air that is turned into electricity.   The caverns are carved out by pumping water deep down to dissolve the underground salt layer peculiar to the Lloydminster area.   Excess wind electricity would be used to pump compressed air into caverns about the size of a 60-storey building. The salt walls allow very little to escape. Then, when the wind dies, the compressed air is released and used to turn a generator to make electricity.   The cavern could store enough compressed air to provide electricity for five days to a city the size of Red Deer, says van Egteren.   “It could really help stabilize the grid by taking off power when the wind is really blowing.”

Siemens developing thermal energy storage system

Siemens is developing a system of storing thermal energy in rocks with the aim of using it to harness excess power from wind turbines. A spokesperson told Windpower Monthly that the project is in the early stages of development and there is no specific timescale for the construction of a prototype of the system.   He said the system would be scaleable for use on site at different projects.   The company was unwilling to reveal specific technical details about the process, but said it relied on established technology.   The storage of heat in rocks has been used as a method of energy retention for some time. But Siemens' system will transform the stored thermal energy back into electricity rather than use it for heating.   This would be done in a "conventional manner" the spokesperson said. The captured heat would be used to create steam to generate electricity through steam turbines.  

Sunrun, OutBack Power Pilot Renewable Energy Storage Systems For Homeowners

Sunrun, the largest dedicated residential solar company in the United States, today announced a partnership with OutBack Power Technologies, Inc. to pilot renewable energy storage-based systems for a select group of Sunrun solar customers. OutBack Power is a designer and manufacturer of power conversion systems incorporating energy storage for off-grid and grid-connected renewable energy applications. As part of the pilot, Sunrun will combine and test OutBack Power's technology consisting of weather-resistant batteries and inverters with home solar systems in both indoor and outdoor environments.  "It is now more affordable than ever for consumers to run their homes with clean power, and we strongly believe that the next evolution of solar as a service for our customers is home solar paired with energy storage," said Sunrun's chief operating officer, Paul Winnowski. "With OutBack Power, we will further our commitment to providing customized and affordable home solar that allows customers to be a part of the solution for building a clean, modern grid that provides power when it is needed the most." 

Battery Backup for Rooftop Solar Power Systems Too Costly

Using batteries to retain energy from rooftop solar systems will be too expensive for at least two years, according to industry executives.   That means homeowners who add solar panels to save money on utility bills will continue to lose electricity during blackouts, even after an 80 percent decline in battery costs over the past decade.   Residential solar systems typically send power to the grid, not directly to the house, and don’t run the home during a blackout. For batteries to save consumers money, stored energy must be drained daily, said Jamie Evans, who runs the U.S. Eco Solutions unit for Panasonic Corp., which supplies lithium-ion cells for Tesla Motors Inc.   “Solar will need storage for grid stability,” Evans said yesterday in an interview at the Solar Power International convention in Las Vegas. “Battery costs need to come down and regulatory structures have to change to really scale up.”   As residential solar become more common from California to New York, utility grids will increasingly become stressed without storage to ease supply and demand imbalances, he said.   For now, that means battery storage only makes economic sense for large businesses that get hit with extra fees when their power usage exceeds utility expectations.  

SCE Unveils Largest Battery Energy Storage Project in North America

For Southern California Edison (SCE), building a smarter grid started many years ago with smart meters and upgrades in distribution equipment. Today, the company takes another leap forward with the opening of the largest battery energy storage project in North America — the Tehachapi Energy Storage Project — to modernize the grid to integrate more clean energy.  The demonstration project is funded by SCE and federal stimulus money awarded by the Department of Energy as part of the American Recovery and Reinvestment Act of 2009.  The 32 megawatt-hours battery energy storage system features lithium-ion batteries housed inside a 6,300 square-foot facility at SCE's Monolith substation in Tehachapi, Calif. The project is strategically located in the Tehachapi Wind Resource Area that is projected to generate up to 4,500 MW of wind energy by 2016.  "This installation will allow us to take a serious look at the technological capabilities of energy storage on the electric grid," said Dr. Imre Gyuk, energy storage program manager in the energy department's Office of Electricity Delivery and Energy Reliability. "It will also help us to gain a better understanding of the value and benefit of battery energy storage."  The project costs about $50 million with matching funds from SCE and the energy department. Over a two-year period, the project will demonstrate the performance of the lithium-ion batteries in actual system conditions and the capability to automate the operations of the battery energy storage system and integrate its use into the utility grid. 

AES Betting On Lithium-Ion Batteries for Long-Duration Energy Storage

When it comes to storing energy at the scale of the power grid, lithium-ion batteries have a lot of advantages -- and, critics say, some significant drawbacks. Sure, lithium-ion is the dominant battery chemistry for consumer electronics and electric vehicles, which helps drive down costs and improve bankability for grid projects (see Tesla’s Giga factory for an example of how this future could unfold). And yes, they’ve been proven in many grid-tied projects around the world. But there are two questions that continue to dog the potential for lithium-ion batteries at grid scale. Can they provide hours of energy at a time to serve grid needs, and can they last for the decade or more required for cost-effective grid use when they’re being discharged so deeply, over and over, day after day?   Cont'd...

Renewable Energy Expert: We Don't Need Power Storage, Just Dance Lessons

It's a truism among renewable energy wonks that in order to run our society on renewable energy, we'll need a revolution in energy storage technology. The reason? Solar and wind are intermittent power sources. The sun goes down and the wind stops blowing, but we don't ever stop using electricity. That means, so the thinking goes, that either we need to get most of our power from something other than solar and wind, or we need to store electrical power generated on bright windy days for use on calm nights. Problem is, storing enough power to supply an energy demand the size of California's would be mind-bogglingly expensive. But an expert who just might be the world's foremost renewable energy wonk says the truism is wrong, and that society can be kept fully powered entirely on renewables, using minimal storage. There will be no technological revolutions required; just a bit of choreography. Amory Lovins, who's been a widely respected renewable energy expert since the 1970s, offers a persuasive argument that we need not worry about the intermittent nature of wind and solar power. The grid can handle it, he says, using current technology to forecast both power production and demand, shifting from one solar plant or wind turbine to another as wind and sunshine vary from region to region. Instead of relying on expensive base-load power plants to generate most of our supply, which usually means natural-gas-fired plants in California, that carefully choreographed use of energy from renewable sources over a wide region can supply almost all of the power an industrial society needs.   Cont'd..

An Energy-Storing Wind Turbine Would Provide Power 24/7

Electricity is the perfect form of power in all respects but one. It can be produced and used in many different ways, and it can be transmitted easily, efficiently, and economically, even over long distances. However, it can be stored directly only at extremely high cost. With some clever engineering, however, we should be able to integrate energy storage with all the important modes of generation, particularly wind-generated power. Right now, to store electricity affordably at grid-scale levels, you need to first convert it into some non-electrical form: kinetic energy (the basis forflywheels), gravitational potential (which underlies all pumped-hydro storage), chemical energy (the mechanism behind batteries), the potential energy of elastically strained material or compressed gas (as in compressed air energy storage), or pure heat. In each case, however, you lose a significant percentage of energy in converting it for storage and then recovering it later on. What if instead you were to completely integrate the energy storage with the generation? Then you wouldn’t have to pay for the extra power-conversion equipment to put the electricity into storage and recover it, and you wouldn’t suffer the losses associated with this two-way conversion. One of the most attractive ideas, I believe, is to integrate storage with wind-generated power. I’ll come back to that in a minute.   cont'd

Panasonic and Tesla Sign Agreement for the Gigafactory

Panasonic Corporation and Tesla Motors, Inc. have signed an agreement that lays out their cooperation on the construction of a large-scale battery manufacturing plant in the United States, known as the Gigafactory.    According to the agreement, Tesla will prepare, provide and manage the land, buildings and utilities. Panasonic will manufacture and supply cylindrical lithium-ion cells and invest in the associated equipment, machinery, and other manufacturing tools based on their mutual approval. A network of supplier partners is planned to produce the required precursor materials. Tesla will take the cells and other components to assemble battery modules and packs. To meet the projected demand for cells, Tesla will continue to purchase battery cells produced in Panasonic's factories in Japan. Tesla and Panasonic will continue to discuss the details of implementation including sales, operations and investment.  The Gigafactory is being created to enable a continuous reduction in the cost of long range battery packs in parallel with manufacturing at the volumes required to enable Tesla to meet its goal of advancing mass market electric vehicles. The Gigafactory will be managed by Tesla with Panasonic joining as the principle partner responsible for lithium-ion battery cells and occupying approximately half of the planned manufacturing space; key suppliers combined with Tesla's module and pack assembly will comprise the other half of this fully integrated industrial complex. 

The Coming Storage Boom: Project Proposals Nearly Double California's Storage Target

California’s push to transform the market for grid-scale energy storage is working even better than expected -- at least on paper.   Last year, California created a mandate calling for 1,325 megawatts of energy storage projects by 2020, to be scaled up every two years. The first installment of proposals due this year adds up to 200 megawatts.   As of mid-2014, more than 2,000 megawatts of energy storage projects have applied to interconnect with the state’s grid, according to recent data from state grid operator California ISO (PDF). In other words, project developers have received the market signal of a 1.3-gigawatt mandate and proposed enough storage to provide nearly double that amount over the coming years.   The list includes 1,669 megawatts of standalone battery storage, 44 megawatts of other standalone storage, 255 megawatts of batteries combined with generation projects, and a 90-megawatt project combining solar and batteries. They are all seeking interconnection under the initiative's “Cluster 7” window, which closed on April 30, 2014. (A project-by-project breakdown of all the applications is available in PDF.)

New spongelike structure converts solar energy into steam

A new material structure developed at MIT generates steam by soaking up the sun. The structure — a layer of graphite flakes and an underlying carbon foam — is a porous, insulating material structure that floats on water. When sunlight hits the structure’s surface, it creates a hotspot in the graphite, drawing water up through the material’s pores, where it evaporates as steam. The brighter the light, the more steam is generated. The new material is able to convert 85 percent of incoming solar energy into steam — a significant improvement over recent approaches to solar-powered steam generation. What’s more, the setup loses very little heat in the process, and can produce steam at relatively low solar intensity. This would mean that, if scaled up, the setup would likely not require complex, costly systems to highly concentrate sunlight. Hadi Ghasemi, a postdoc in MIT’s Department of Mechanical Engineering, says the spongelike structure can be made from relatively inexpensive materials — a particular advantage for a variety of compact, steam-powered applications. “Steam is important for desalination, hygiene systems, and sterilization,” says Ghasemi, who led the development of the structure. “Especially in remote areas where the sun is the only source of energy, if you can generate steam with solar energy, it would be very useful.”

How Much Energy Storage Do You Need to Back Up the London Array?

Storing electricity underwater in the form of compressed air is a tantalizing notion that could, if it works, help solve the intermittency problem of wind, solar, and other renewable sources. That “if” is a big one, though, because there are many details engineers have yet to nail down for underwater compressed-air energy storage (UW-CAES). One company that’s been trying to nail down those details is the Canadian start-up Hydrostor. I recently wrote about its plans to deploy the world’s first commercial UW-CAES system in Lake Ontario. The Hydrostor system will use electricity from the Toronto Hydro power grid to run a compressor; the compressed air will then be stored in flexible energy bags submerged at a depth of about 80 meters. Later, the air will be run through a turbine when the energy is needed. For all that effort, the system will be able to supply just a megawatt of electricity for up to three hours. Eventually, the company is aiming for a capacity of 20 to 30 megawatts that can be discharged over 10 to 20 hours. But a big wind or solar farm would require a lot more storage than that.. cont'd.

OutBack Power Debuts Next Generation Grid/Hybrid Solar to the Builder Community

OutBack Power Technologies, Inc., a designer and manufacturer of advanced power electronics for renewable energy, backup power and mobile applications, will showcase its newest Radian Grid/Hybrid solar systems at PCBC, June 25 to 26 in San Francisco. Supported by smarter technology, including the new GridZero Radian inverters, energy storage options, and OPTICS RE mobile monitoring and control application, these next-generation solar systems deliver both renewable economics and energy independence to homeowners, installers and builders. The result is increased customer satisfaction through reduced anxiety concerning solar investment in the midst of changing utility policies, and remote system control for installers reducing the need for costly service calls.  Until now, solar users fell into two categories: off-grid, but with limited electrical use; and grid-tied with the ability to save money when the sun is shining, but with no option for power during outages or emergencies. OutBack Power's Grid/Hybrid systems with energy storage offer the best of both worlds: Homeowners can choose to go off-grid and store unused energy for future use, or use the grid as their backup when they need extra electricity beyond what their system can produce. 

New Report Finds Thermal Energy Storage Could Add Value To Solar Energy

A new report from NREL, the National Renewable Energy Laboratory, could help spur the development of more utility scale concentrating solar power plants with thermal energy storage features while boosting the market for solar cells, too. The report indicates that CSP/energy storage projects could add value to utility scale solar energy in California, and they would enable more solar cell development by creating additional grid flexibility. California’s ambitious renewable energy goal for 2020 also plays a key role, so keep in mind that the NREL added-value findings for thermal energy storage are transferable to only to other states with similar aspirations.  

Records 166 to 180 of 182

First | Previous | Next | Last

Energy Storage & Grids - Featured Product

US Battery - Solar RE L16XC Renewable Energy Battery

US Battery - Solar RE L16XC Renewable Energy Battery

Our batteries have Xtreme thick plates with (XC Diamond Plate Technology) added to them. They have been designed for hours of heavy discharge each day, followed by a fast recharge during the daylight hours. Very few batteries can take the grueling deep discharge-recharge cycle every day for long periods of time. U.S. Battery has proven time and time again that our solar battery line can stand up to this type of battery torture day in and day out for years to come. When you demand reliable energy storage count on U.S. Battery every time!