Rules prevent solar panels in many states with abundant sunlight

Few places in the country are so warm and bright as Mary Wilkerson's property on the beach near St. Petersburg, Fla., a city once noted in the Guinness Book of World Records for a 768-day stretch of sunny days.   But while Florida advertises itself as the Sunshine State, power company executives and regulators have worked successfully to keep most Floridians from using that sunshine to generate their own power.   Wilkerson discovered the paradox when she set out to harness sunlight into electricity for the vintage cottages she rents out at Indian Rocks Beach. She would have had an easier time installing solar panels, she found, if she had put the homes on a flatbed and transported them to chilly Massachusetts.   "My husband and I are looking at each other and saying, 'This is absurd,'" said Wilkerson, whose property is so sunny that a European guest under doctor's orders to treat sunlight deprivation returns every year. The guest, who has solar panels on his home in Germany, is bewildered by their scarcity in a place with such abundant light.   Florida is one of several states, mostly in the Southeast, that combine copious sunshine with extensive rules designed to block its use by homeowners to generate power.  

An Energy-Storing Wind Turbine Would Provide Power 24/7

Electricity is the perfect form of power in all respects but one. It can be produced and used in many different ways, and it can be transmitted easily, efficiently, and economically, even over long distances. However, it can be stored directly only at extremely high cost. With some clever engineering, however, we should be able to integrate energy storage with all the important modes of generation, particularly wind-generated power. Right now, to store electricity affordably at grid-scale levels, you need to first convert it into some non-electrical form: kinetic energy (the basis forflywheels), gravitational potential (which underlies all pumped-hydro storage), chemical energy (the mechanism behind batteries), the potential energy of elastically strained material or compressed gas (as in compressed air energy storage), or pure heat. In each case, however, you lose a significant percentage of energy in converting it for storage and then recovering it later on. What if instead you were to completely integrate the energy storage with the generation? Then you wouldn’t have to pay for the extra power-conversion equipment to put the electricity into storage and recover it, and you wouldn’t suffer the losses associated with this two-way conversion. One of the most attractive ideas, I believe, is to integrate storage with wind-generated power. I’ll come back to that in a minute.   cont'd

A Giant Floating Duck That Generates Solar Power—Because, Why Not?

A group of artists, scientists and engineers have proposed a novel solution to help Copenhagen's achieve its goal of becoming a carbon-neutral city: a 12-story-high solar energy farm in the shape of a duck. Energy Duck is the brainchild (brainduckling?) of the  Land Art Generator I nitiative  (LAGI), which designs public art installations that also function as utility-scale clean energy generators. So, why a duck? According to LAGI: The common eider duck resides in great numbers in Copenhagen; however, its breeding habitat is at risk from the effects of climate change. Energy Duck takes the form of the eider to act both as a solar collector and a buoyant energy storage device. Solar radiation is converted to electricity using low cost, off-the-shelf PV panels. Some of the solar electricity is stored by virtue of the difference in water levels inside and outside the duck. When stored energy needs to be delivered, the duck is flooded through one or more hydro turbines to generate electricity, which is transmitted to the national grid by the same route as the PV panel-generated electricity. Solar energy is later used to pump the water back out of the duck, and buoyancy brings it to the surface. The floating height of the duck indicates the relative cost of electricity as a function of citywide use: as demand peaks the duck sinks.  

Britain Is Solar-Energy Hot Spot

Britain, a land of cloudy skies and reliable rain, is fast becoming the hottest spot in Europe for many investors in solar energy. Germany is overcrowded with panels. A sudden end to subsidies killed Spanish solar. A sluggish economy is dragging on Italy. But the U.K. has benefited from a combination of stable subsidies since 2011, public support for solar, amenable planning authorities and creative finance. In 2010, there were under 100 megawatts of solar capacity in the U.K.—barely enough to power the homes of a modest town. Now, there is between 3.2 and 4 gigawatts. This year, market-research firm Solarbuzz projects that the U.K. will overtake Germany as Europe's largest installer of solar panels, putting in 6% of the world's new solar.

Fixed-Tilt System vs. Single-Axis Tracker O&M Comparison

As PV plants come out of warranty from the installer, an understanding of what needs repair, when, and how to do it is just as important as what equipment was selected and how it was installed.

Vertical-axis, Magnetically Levitated AND Magnetically Powered Wind Turbine Technology

Regenedyne has invented a magnetic levitation system, that when combined with the advanced aeronautics, eliminates the wobble issue and allows for a smooth, near frictionless, rotation.

TOP 5 Renewable Energy Crowdfunding Platforms.

The five platforms listed below are the top leaders in renewable energy crowd funding, based on the money they have raised so far.

Grid-connected Flywheel Energy Storage Facility

Temporal Power flywheels are used for short term energy balancing on the power grid.

Most Popular Alternative Energy Articles: Jan - July 2014

Here are some of the more popular articles so far this year --- a wide range of alternative energy topics.

The Future of Solar is Written in its Past

The PV pioneers and solar veterans made the future possible, but we couldn't imagine what it would look like. The young now own it, and they have no doubts about where it is going, and what they have to do to get it there.

Renewable Packaging

It's important to decrease the environmental impact by reducing the size of the packaging, switching to renewable raw materials, reusing materials, and finally, recycling materials for later use.

Multi-Function Meets Multi-Discipline

Product development in a shifting solar market shows "onshoring" makes sense

Solar Energy Moves into a Brighter Future

Sun tracking is accomplished through azimuth and elevation (screw jack) drives that require a high degree of accuracy and durability.

The Clean Energy Alchemists

Ontario, Canada, companies transform wind, sunshine and even sawdust into green power

Panasonic and Tesla Sign Agreement for the Gigafactory

Panasonic Corporation and Tesla Motors, Inc. have signed an agreement that lays out their cooperation on the construction of a large-scale battery manufacturing plant in the United States, known as the Gigafactory.    According to the agreement, Tesla will prepare, provide and manage the land, buildings and utilities. Panasonic will manufacture and supply cylindrical lithium-ion cells and invest in the associated equipment, machinery, and other manufacturing tools based on their mutual approval. A network of supplier partners is planned to produce the required precursor materials. Tesla will take the cells and other components to assemble battery modules and packs. To meet the projected demand for cells, Tesla will continue to purchase battery cells produced in Panasonic's factories in Japan. Tesla and Panasonic will continue to discuss the details of implementation including sales, operations and investment.  The Gigafactory is being created to enable a continuous reduction in the cost of long range battery packs in parallel with manufacturing at the volumes required to enable Tesla to meet its goal of advancing mass market electric vehicles. The Gigafactory will be managed by Tesla with Panasonic joining as the principle partner responsible for lithium-ion battery cells and occupying approximately half of the planned manufacturing space; key suppliers combined with Tesla's module and pack assembly will comprise the other half of this fully integrated industrial complex. 

Records 1186 to 1200 of 3377

First | Previous | Next | Last

Featured Product

Rolls Battery - Maintenance-Free AGM & GEL Batteries

Rolls Battery - Maintenance-Free AGM & GEL Batteries

With a full range of capacity options (85AH-3300AH) and voltage configurations to choose from, Rolls Battery maintenance-free 2V, 6V & 12V AGM and broad range of 2V GEL models offer a valve regulated lead acid (VRLA) battery option with the same dependable energy storage and heavy-duty construction customers have grown to expect from the Rolls brand for over sixty years. Installed in off-grid, grid-tied or backup float applications, these sealed batteries require minimal ongoing maintenance and provide a versatile energy storage solution for remote or confined installations. Rolls Battery AGM and GEL battery lines deliver superior cycle life and are backed by an industry-leading warranty.