Groundbreaking technology stores wind power in salt caverns

In the Lloydminster area, a Calgary company is ready to carve out large underground salt caverns to store excess wind energy — the first use of the technology in Canada.   Rocky Mountain Power president Jan van Egteren says the storage sites could be ready in five years.   Salt caverns have been used to store natural gas for years, but only two other projects in North America are using them for compressed air that is turned into electricity.   The caverns are carved out by pumping water deep down to dissolve the underground salt layer peculiar to the Lloydminster area.   Excess wind electricity would be used to pump compressed air into caverns about the size of a 60-storey building. The salt walls allow very little to escape. Then, when the wind dies, the compressed air is released and used to turn a generator to make electricity.   The cavern could store enough compressed air to provide electricity for five days to a city the size of Red Deer, says van Egteren.   “It could really help stabilize the grid by taking off power when the wind is really blowing.”

House of Representatives approves PTC extension

UNITED STATES: The US House of Representatives has approved a one-year extension to the production tax credit (PTC). The extension will allow US projects that began construction activities in 2014 to apply for the credit. It gives producers of wind power a $0.023/kWh incentive.   The Senate will now need to approve the bill before it becomes law. The Senate vote is expected to take place in the coming days as both Houses are expected to adjourn for the Christmas break next week.   Many in the industry had called for a two-year extension to the credit, which now would expire at the end of 2014.   The Senate Finance Committee approved a two-year extension to the PTC in April, as part of a package of tax measures.   The American Wind Energy Association (AWEA) said the extension creates uncertainty in the US sector. AWEA also warned of a dramatic slowdown to the industry, similar to 2013 when the PTC previously expired, resulting in a 92% drop in installations.  

Largest Solar Plant In The World Is Now Operating

Did you hear about the largest solar power plant in the world and how it is now producing electricity? Did it make the nightly broadcast news? Probably not, but Solyndra was all over the news media for a while. There’s a blatant lack of coverage for solar success stories, so it wouldn’t be surprising if most people aren’t hearing about them. California’s Topaz project is the largest solar power plant in the world with a 550 MW capacity, and it is now in full operation. It is located in San Luis Obispo County and has 9 million solar panels. Construction began just two years ago. The electricity produced by the plant will be purchased by Pacific Gas and Electric. The solar panels were manufactured by First Solar and the project was developed by First Solar.   SEIA says about 200 homes in California are powered for each MW of solar power capacity. So, for a 550 MW solar plant, about 110,000 homes could be powered when the sun is shining. First Solar has said this figure could be 160,000 homes in the case of Topaz.   The San Luis Obispo county population is about 276,000. It might turn out that the majority of this population could be powered by a single solar power plant.

The Fuel Cell Industry Review 2014

The Fuel Cell Industry Review 2014 offers data and analysis by region, application, and fuel cell type, and includes objective commentary on key events in the industry over the past year.

Solar photovoltaic output depends on orientation, tilt, and tracking

Tilt angles may reflect factors other than generator performance. Some installation sites may not be conducive to tilted arrays or specific orientations

Optimizing a Solar Array's Tilt and Module Spacing

System optimization is more than just good-looking charts - in this case, we are able to increase system profit by $40k, an increase of over 70% versus the 15ş-tilt baseline design.

Harvesting Energy From Heat

In the United States, more than half of the energy we burn each year gets lost as heat instead of being put to use with most of the energy going out the exhaust pipe of a car or out the smokestack of a power plant.

Q3 2014 Deal Volume Comparison

Acquisition activity in Q3 2014 was lower than most quarters in recent history. Activity was distributed relatively evenly across the solar markets in Europe, North America and Asia, with cross-continental deals accounting for the greatest number of transactions.

Utilizing Geographical Information Systems (GIS) for Alternative Energy Projects

With GIS, companies can view, understand, question, interpret and visualize data in many ways that reveal relationships, patterns and trends in the form of maps, globes, reports and charts.

Toyota Launches the Mirai Fuel Cell Electric Car

ITM Power, the energy storage and clean fuel company, is pleased to note that the world's largest carmaker, Toyota, announced that it will begin selling fuel-cell electric cars in Japan on 15 December, 2014, and in the US and Europe in mid-2015.

Creating Roads from Waste

The roads constructed using this technology are more durable and economical than the conventional bitumen roads.

E.ON to quit gas and coal and focus on renewable energy

Germany’s biggest utility firm, E.ON, has announced plans to split in two and spin off most of its power generation, energy trading and upstream businesses, responding to a crisis that has crippled the European energy sector.   E.ON said it wanted to focus on its renewable activities, regulated distribution networks and tailor-made energy efficiency services, citing “dramatically altered global energy markets, technical innovation, and more diverse customer expectations”.   “E.ON’s existing broad business model can no longer properly address these new challenges,” the chief executive, Johannes Teyssen, said in a statement.   Germany’s power sector has been in turmoil, hit by a prolonged period of weak demand, low wholesale prices and a surge in renewable energy sources which continue to replace gas-fired and coal-fired power plants.   E.ON said it would prepare next year for the listing of the new company created by its breakup, with the spin-off taking place after its 2016 annual general meeting.

Solar cloth could stretch PV's applications

A British start-up has developed a way for parking lots and structures with roofs that can’t take much weight to harness the power of the sun.   The Cambridge, England-based Solar Cloth Company is beginning to run trials of its solar cloth, which uses lightweight photovoltaic fabric that can be stretched across parking lots or on buildings that can’t hold heavy loads, such as sports stadiums with lightweight, retractable roofs. Perry Carroll, Solar Cloth Company’s founder, told BusinessGreen that the company is working to close deals to install solar cloth on 27,000 parking lots.   “We have built a growing sales pipeline worth £4.2m [about $US6.57 million] for 2015, including park and ride projects, airport parking operators and retail park owners,” he said.   According to Solar Cloth Company, there are about 320 square miles of roof space and 135 square miles of parking space in the UK that could be covered by solar cloth, and if all of these spaces were covered, the solar power produced would be enough to power the UK’s grid three times.

Wind energy provides more than 2/3 of new US capacity in October

According to the latest "Energy Infrastructure Update" report from the Federal Energy Regulatory Commission's (FERC) Office of Energy Projects, wind power provided over two-thirds (68.41%) of new U.S. electrical generating capacity in October 2014. Specifically, five wind farms in Colorado, Kansas, Michigan, Nebraska, and Texas came on line last month, accounting for 574MW of new capacity.    In addition, seven "units" of biomass (102MW) and five units of solar (31MW) came into service accounting for 12.16% and 3.69% of new capacity respectively. The balance came from three units of natural gas (132MW - 15.73%).   Moreover, for the eighth time in the past ten months, renewable energy sources (i.e., biomass, geothermal, hydropower, solar, wind) accounted for the majority of new U.S. electrical generation brought into service. Natural gas took the lead in the other two months (April and August).   Of the 9,903MW of new generating capacity from all sources installed since January 1, 2014, 34 units of wind accounted for 2,189MW (22.10%), followed by 208 units of solar - 1,801MW (18.19%), 45 units of biomass - 241MW (2.43%), 7 units of hydropower - 141MW (1.42%), and 5 units of geothermal - 32MW (0.32%). In total, renewables have provided 44.47% of new U.S. electrical generating capacity thus far in 2014.

Why Google halted its research into renewable energy

Back in 2007, Google had a very simple idea for addressing global warming — we just need to take existing renewable-energy technologies and keep improving them until they were as cheap as fossil fuels. And, voila! Problem solved.   That was the logic behind the company's RE-C project, which aimed to produce one gigawatt of renewable electricity for less than the price of coal. The hope was to do this within years, not decades. Among other things, the company invested in new geothermal drilling R&D and put $168 million toward Brightsource's Ivanpah solar tower in the Mojave Desert.   By 2011, however, Google decided that this "moon shot" energy initiative wasn't going to work out as planned and shut things down. So what happened?   In a long essay at IEEE Spectrum, two Google engineers on the project — Ross Koningstein and David Fork — explain the thinking behind the closure. It's not that Google has given up on renewable energy. (The company still spends many millions of dollars buying wind energy for its servers.) Partly it's that they simply weren't on track to achieve their specific goals.   But, more interestingly, the project also made the engineers realize that their original clean-energy goal wasn't nearly ambitious enough.   Cont'd...

Records 1096 to 1110 of 3401

First | Previous | Next | Last

Featured Product

Darfon G320 Microinverter

Darfon G320 Microinverter

The Darfon G320 is the microinverter solution for today's high-power solar modules. The G320 handles 60- and 72-cell modules up to 350W DC and outputs up to 300W AC. The G320's 3-phase configuration accommodates the electrical distribution systems of most commercial buildings and to reduce, if not eliminate, the need for expensive transformers. The G320 comes in four voltage/phase configurations, so it can be installed in residential, commercial or utility applications.